x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

chịu

:::)))

15 tháng 11 2021

Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)

\(n+8⋮n^2+1\)

\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)

\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)

Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)

15 tháng 5 2016

\(\Delta\)ABC cân,ACB=100 độ=>CAB=CBA=40 độ

trên AB lấy AE=AD.cần chứng minh AE+DC=AB (hoặc EB=DC)

\(\Delta\)AED cân,DAE=40 độ:2=20 độ

=>ADE=AED=80 độ=40 độ+EDB (góc ngoài của \(\Delta\)EDB)

=>EDB=40 độ =>EB=ED  (1)

trên AB lấy C' sao cho AC'=AC

\(\Delta\)CAD=\(\Delta\)C'AD (c.g.c)

=>AC,D=100 độ và DC,E=80 độ

vậy \(\Delta\)DC'E cân =>DC=ED (2)

từ (1) và (2) có EB=DC'

mà DC'=DC.vậy AD+DC=AB

5 tháng 1 2018

phiếu

Dãy số trên có số số hạng là :

( 999 -1 ) :2 +1 = 500 ( số hạng )

tổng của dãy số trên là :

{( 999 +1) *500} : 2 = 250000

Vậy C= 250000

5 tháng 1 2018

C = 1 + 3 + 5 + ... + 997 + 999

số số hạng : ( 999 - 1 ) : 2 + 1 = 500

Tổng : ( 999 + 1 ) . 500 : 2 = 250000

Vậy tổng C = 250000

9 tháng 1 2018

công thức :

Số số hạng : ( 999 - 1 ) : 2 + 1 = 500

Tổng : ( 999 + 1 ) . 500 : 2 = 250000

Vậy C = 250000

Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)

5 tháng 1 2018

B = 1 + 2 + 3 + 4 + ... + 98 + 99
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950

5 tháng 1 2018

Toán lớp 4 à?

5 tháng 1 2018

câu c đấy bạn 

5 tháng 1 2018

tự trả lời

27 tháng 6 2016

Q = x2  + y2  + z2  + x2 – y2  + z2  + x2   + y2  - z2

= x2 + x2  + x2  + y+ y2  - y2 + y2 + z2  + z- z2

= 3x2 + y+ z2

\(x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)

\(=x^2+x^2+x^2+y^2+y^2-y^2+z^2+z^2-z^2\)

\(=3x^2+y^2+z^2\)

9 tháng 1 2018

có công thức nữa đó bạn :

Số số hạng : ( 99 - 1 ) : 1 + 1 = 99

Tổng : ( 99 + 1 ) . 99 : 2 = 4950

Vậy B = 4950

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

D=10+12+14+...+994+996+998
=10+(12+998)+(16+996)+...+(500+500)
=10+1010+1010+...+1010
=10+1010*247(Ta tính số số hạng /2)
=10+249470=249480

tk cho mk nha

 Số số hạng của D là :

(998-10):2+1=500(Số hạng)

Tổng của D là:

(998+10)x500:2=252000

 Vậy D=252000

                Bn kiểm ra lại bg máy nha ~k giùm mk nếu ddungs~ thankđã tt

Câu trả lời hay nhất:  3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

tk cho mk nha $_$

5 tháng 1 2018

A=1.2+2.3+3.4+...+n(n+1)

3A=1.2.3+2.3.3+3.4.3+...+n(n+1).3

3A=1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+n(n+1)[(n+2)-(n-1)]

3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]

3A=n(n+1)(n+2)-0.1.2

3A=n(n+1)(n+2)

A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)