Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)
P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y
= ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)
= ( x+ y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+ y)
= ( x+ y)^3 - 3 ( x+ y)^2 + 3(x +y)
Thay x+ y = 101 ta có :
= 101^3 - 3.101^2 + 3.101
= 101 . ( 101^2 - 3.101 + 3 )
= 101 .9901
= 1000001
\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3-\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(\Leftrightarrow\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(x^3-x+3x^2y+3xy^2+y^3-y\\ =\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\\ =\left(x+y\right)^3-\left(x+y\right)\\ =\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left[\left(x^2+2xy+y^2\right)-1\right]\)
bài này dễ lắm bạn ạ
x3-x+3x2y+3xy2+y3-y
= (x3+3x2y+3xy2+y3)-x-y
= (x+y)3-(x+y)
= (x+y)[(x+y)2-1]
= (x+y)(x+y-1)(x+y+1)
x3-x+3x2y+3xy2+y3-y
= (x+y)3 + (x+y)
= (x+y) [(x+y)2+1]
= (x+y) (x2 + 2xy+y2 +1)
x3 - x + 3x2y + 3xy2 + y3 - y
= (x3 + 3x2y + 3xy2 + y3) - y - x
= (x + y)3 - (x + y) = (x + y) [(x + y)2 - 1]
= (x + y) (x + y - 1) (x + y + 1)
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)
Bài giải:
\(x^3-3x^2+3x^2y+3xy^2+y ^3-3y^2-6xy+3x+3y+2012\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(6xy+3x^2+3y^2\right)+\left(3x+3y\right)+2012\)
\(=\left(x+y\right)^3-3\left(2xy+x^2+y^2\right)+3\left(x+y\right)+2012\)
\(=101^3-3.101^2+3.101+2012\)
\(=101^3-3.101^2+3.101-1+2013\)
\(=100^3+2013=1002013\)
Tự kết luận nha bạn ^^
x3-x+3x2y+3xy2+y3-y
=(x+y)3-(x+y)
=(x+y)[(x+y)2-1]
=(x+y)(x+y-1)(x+y+1)
đề yêu cầu làm j vậy bạn