K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

x3-x+3x2y+3xy2+y3-y

=(x+y)3-(x+y)

=(x+y)[(x+y)2-1]

=(x+y)(x+y-1)(x+y+1)

7 tháng 12 2017

đề yêu  cầu làm j vậy bạn

11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)

4 tháng 8 2015

P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y

         = ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)

         = ( x+  y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+  y)

         = ( x+  y)^3 - 3 ( x+ y)^2 + 3(x +y)

Thay x+  y = 101 ta có :

        = 101^3 - 3.101^2 + 3.101

         = 101 . ( 101^2 - 3.101 + 3 )

         = 101 .9901

        =  1000001

1000001

chắc chắn 100%

22 tháng 6 2017

\(x^3-x+3x^2y+3xy^2+y^3-y\)

\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3-\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(\Leftrightarrow\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

\(x^3-x+3x^2y+3xy^2+y^3-y\\ =\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\\ =\left(x+y\right)^3-\left(x+y\right)\\ =\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left[\left(x^2+2xy+y^2\right)-1\right]\)

23 tháng 12 2016

bài này dễ lắm bạn ạ vui

x3-x+3x2y+3xy2+y3-y

= (x3+3x2y+3xy2+y3)-x-y

= (x+y)3-(x+y)

= (x+y)[(x+y)2-1]

= (x+y)(x+y-1)(x+y+1)

18 tháng 2 2019

Ko có đề mà bn vẫn lm đc ư ??

27 tháng 6 2016

x3-x+3x2y+3xy2+y3-y

= (x+y) + (x+y)

= (x+y) [(x+y)2+1]

= (x+y) (x2 + 2xy+y2 +1)

27 tháng 6 2016

x- x + 3x2y + 3xy+ y- y

= (x3 + 3x2y + 3xy+ y3) - y - x

= (x + y)- (x + y) = (x + y) [(x + y)2 - 1]

= (x + y) (x + y - 1) (x + y + 1)

11 tháng 7 2017

c)\(x^3+3xy+y^3\)

\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2\)

\(=1^2=1\)

11 tháng 7 2017

d) \(x^3-3xy-y^3\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x^2+xy+y^2\right)-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1^2=1\)

@Đoàn Đức Hiếu lm a,b đi nhé

3 tháng 10 2018

Bài giải:

\(x^3-3x^2+3x^2y+3xy^2+y ^3-3y^2-6xy+3x+3y+2012\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(6xy+3x^2+3y^2\right)+\left(3x+3y\right)+2012\)

\(=\left(x+y\right)^3-3\left(2xy+x^2+y^2\right)+3\left(x+y\right)+2012\)

\(=101^3-3.101^2+3.101+2012\)

\(=101^3-3.101^2+3.101-1+2013\)

\(=100^3+2013=1002013\)

Tự kết luận nha bạn ^^

3 tháng 10 2018

<=>P=(x3+3x2y+3xy2+y3)+(-3x2-3y2)-6xy+(3x+3y)+2012

<=>P=(x+y)3-3(x2+y2)-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+6xy-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+3(x+y)+2012

<=>P=1013-3.1012+3.101+2012

=>P=1002013