Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)
\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
\(x+2\sqrt{2}x^2+2x^3=0\) (1)
\(\Leftrightarrow x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(\Leftrightarrow x\left(1+\sqrt{2}x\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(1+\sqrt{2}x\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{\sqrt{2}}{2};0\right\}\)
\(x+2\sqrt{2}x^2+2x^3=0\Leftrightarrow x\left(2x^2+2.\sqrt{2}x+1\right)=0\Leftrightarrow x\left(\sqrt{2}x+1\right)^2=0\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{2}x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{2}x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{\sqrt{2}}\end{matrix}\right.\)
\(x^3+\sqrt{2}x^2+2x=0\)
\(\Leftrightarrow x\left(x^2+\sqrt{2}x+2\right)=0\)
Ta thấy: \(x^2+\sqrt{2}x+2=x^2+2\cdot\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+\dfrac{3}{2}=\left(x+\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{3}{2}>0\)
=> x = 0
Vậy,..........