\(x^3-7x+6=0\)

Giải pt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

\(x^3-7x+6=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x-2\right)-1\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=1\end{matrix}\right.\)

6 tháng 2 2022

x3 hả cậu

23 tháng 1 2020

\(6x^2-7x+2=0\)

Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)

\(x^6-1=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)

Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)

23 tháng 1 2020

\(6x^2-7x+2=0\)

\(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)

\(x^6-1=0\)

\(\Leftrightarrow x^6=1\)

\(\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)

22 tháng 7 2017

a. \(\left(x-1\right)^2+3x\left(x-2\right)=1\)

\(\Leftrightarrow x^2-2x+1+3x^2-6x-1=0\)

\(\Leftrightarrow4x^2-8x=0\)

\(\Leftrightarrow4x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

22 tháng 7 2017

a. \(\left(x-1\right)^2+3x.\left(x-2\right)=1\)

\(\Leftrightarrow x^2-2x+1+3x^2-6x-1=0\)       \(\Leftrightarrow4x^2-8x=0\)             \(\Leftrightarrow4x.\left(x-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}4x=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 0 ; 2 }

b)  \(x^3-7x-6=0\)        \(\Leftrightarrow x^3+2x^2-2x^2-4x-3x-6=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(2x^2+4x\right)-\left(3x+6\right)=0\)      \(\Leftrightarrow x^2.\left(x+2\right)-2x.\left(x+2\right)-3.\left(x+2\right)=0\)

\(\Leftrightarrow\) \(\left(x+2\right).\left(x^2-2x-3\right)=0\)  \(\Leftrightarrow\)\(\left(x+2\right).\left[\left(x^2-2x+1\right)-4\right]=0\)

\(\Leftrightarrow\left(x+2\right).\left[\left(x-1\right)^2-2^2\right]=0\)   \(\Leftrightarrow\left(x+2\right).\left(x-1+2\right).\left(x-1-2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x+1\right).\left(x-3\right)=0\)\(\Leftrightarrow\hept{\begin{cases}x+2=0\\x+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\x=-1\\x=3\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { -2 ; -1 ; 3 }

1 tháng 4 2017

<=> (x - 3) (x - 2) (x + 1) (2 x + 1) = 0

\(x=3;x=2;x=-1;x=-\frac{1}{2}\)

2 tháng 3 2019

\(x^4-6x^3+7x^2+6x-8=0\)

\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)

\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)

Vậy S={-1;1;2;4}

10 tháng 2 2020

\(a.2x^2+7x-9=0\\ \Leftrightarrow2\left(x^2+\frac{7}{2}x-\frac{9}{2}\right)=0\\\Leftrightarrow x^2+\frac{7}{2}x-\frac{9}{2}=0\\ \Leftrightarrow x^2+\frac{9}{2}x-x-\frac{9}{2}=0\\\Leftrightarrow x\left(x+\frac{9}{2}\right)-\left(x+\frac{9}{2}\right)=0\\\Leftrightarrow \left(x-1\right)\left(x+\frac{9}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+\frac{9}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{9}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-\frac{9}{2}\right\}\)

10 tháng 2 2020

\(b.x^2-4x+3=0\\\Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Rightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)

a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

=>x=3 hoặc x=-10/7

b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)

\(\Leftrightarrow x^2-12x-51+13x+39=0\)

\(\Leftrightarrow x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=-4

4 tháng 3 2018

a.

3x - 2 = 2x - 3

<=> 3x -2x = -3+2

<=> x = -1

Vậy.............

b.

\(5-\left(x-6\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-x+6=12-8x\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

Vậy..........

4 tháng 3 2018

Hỏi đáp ToánHỏi đáp ToánHỏi đáp Toán