Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5x+1)2 - (5x-3).(5x+3) = 0
25x2 + 10x + 1 - 25x2 + 9 = 0
10x + 10 = 0
10.(x+1) = 0
=> x + 1 = 0 => x = - 1
b) (x+3).(x2 - 3x + 9) - x.(x-2).(x+2) = 0
x3 + 27 - x.(x2 - 4) = 0
x3 + 27 - x3 + 4x = 0
27 + 4x = 0
4x = - 27
x = -27/4
c) 3x.(x-2) - x + 2= 0
3x.(x-2) - (x-2) = 0
(x-2).(3x-1) = 0
=> x - 2 =0 => x = 2
3x-1 = 0 => 3x = 1 => x = 1/3
d) x.(2x-3) - 2.(3-2x) = 0
x.(2x-3) + 2.(2x-3) = 0
(2x-3).(x+2) = 0
=> 2x - 3 = 0 => 2x = 3 => x = 3/2
x+ 2 = 0 => x = -2
KL:...\
a: x<5 thì 5-x>0
A=5x+5-x+5=4x+10
b: Khi x>=0 thì \(B=5x+10+3x=8x+10\)
Khi x<0 thì B=5x+10-3x=2x+10
d: Khi x>=3 thì \(D=x-3-3x+15=-2x+12\)
Khi x<3 thì D=3-x-3x+15=-4x+18
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
c. x^2-5x+6=0
<=> x^2-5x=-6
<=> -4x=-6
<=> x=-6/-4
vậy tập nghiệm của pt là s={-6/-4}
a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(5x-1-5x\right)=0\Leftrightarrow1-5x=0\Leftrightarrow x=\dfrac{1}{5}\)
Vaayj........
b/ \(x\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\Leftrightarrow x=-1\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)
Vay......
c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=3\end{matrix}\right.\)
Vậy.....
\(a)\) \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right)\left(5x-1-5x\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right).\left(-1\right)=0\)
\(\Leftrightarrow\)\(5x-1=0\)
\(\Leftrightarrow\)\(5x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}\)
\(b)\) \(x\left(x+1\right)\left(x+2\right)=0\)
Suy ra \(x=0\) hoặc \(x+1=0\) hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
Vậy \(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
\(c)\) \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=0-2\\x=0+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=3\end{cases}}}\)
Vậy \(x=\frac{-2}{3}\) hoặc \(x=3\)
Chúc bạn học tốt ~
a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
<=> \(\left(5x-1\right)\left(5x-1-5x\right)=0\)
<=> \(-1\left(5x-1\right)=0\)
<=> \(5x-1=0\)
<=> \(5x=1\)
<=> \(x=\frac{1}{5}\)
b/ \(x\left(x+1\right)\left(x+2\right)=0\)
<=> \(x=0\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
<=> \(x=0\)hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
<=> \(\left(3x+2\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=-2\\x=3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=3\end{cases}}\)
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
Bg
x3 - 3x - x(x2 + 5x + 2) = 0
(x2 - 3).x - x(x2 + 5x + 2) = 0
x.[x2 - 3 - (x2 + 5x + 2)] = 0
=> x = 0 hoặc x2 - 3 - (x2 + 5x + 2) = 0
Xét x2 - 3 - (x2 + 5x + 2) = 0:
=> x2 - 3 - x2 - 5x - 2 = 0
=> x2 - x2 - (3 + 2) - 5x = 0
=> -5 - 5x = 0
=> 5x = -5
=> x = -5 : 5
=> x = -1
Vậy x = 0 hoặc x = -1
\(x^3-3x-x\left(x^2+5x+2\right)=0\)
\(\Leftrightarrow x^3-3x-x^3-5x^2-2x=0\)
\(\Leftrightarrow-5x-5x^2=0\)
\(\Leftrightarrow-5x\left(1+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-5x=0\\1+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)