Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2+5)(x-1)(2x+3)=0
<=> x2+5=0 hoặc x-1=0 hoặc 2x+3=0
<=> x2=-5(loại) hoặc x=1 hoặc 2x=-3
<=> x=1 hoặc x=-3/2
Vậy x=1; x=-3/2
Trả lời:
\(\left(x^2+5\right)\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x^2+5=0\)hoặc\(x-1=0\)hoặc\(2x+3=0\)
\(\Leftrightarrow\)\(x^2=-5\)hoặc \(x=1\)hoặc \(2x=-3\)
\(\Leftrightarrow\)\(x\in\varnothing\)(Vì\(x^2\ge0\)với \(\forall x\)) hoặc \(x=1\)hoặc \(x=\frac{-3}{2}\)
Vậy\(x=1\)hoặc \(x=\frac{-3}{2}\)
Hok tốt!
Bad boy
<=> \(x^2-25=10x+35-2x^2-7x\)
<=> \(3x^2-3x-60=0\)
<=> \(x^2-x-20=0\)
<=> \(\left(x-5\right)\left(x+4\right)=0\)
<=> \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vay \(x\in\left\{-4;5\right\}\)
Chuc ban hoc tot
Bài làm
2+4+...+2016+2018/1019090 = -3x² - 4x
Ta có: số số hạng tử của phân số 2+4+...+2016+2018/1019090 là:( 2018 - 2 ) : 2 + 1 = 1009 ( số hạng)
Tổng của tử đó là: ( 2018 + 2 ) . 1009 : 2 = 1019090
=> Ta được: 1019090/1019090 = -3x² - 4x
<=> -3x² - 4x = 1
<=> -3x² - 4x - 1 = 0
<=> -3x² - 3x - x - 1 = 0
<=> -3x( x + 1 ) -( x + 1 ) = 0
<=> ( x + 1 )( -3x - 1 ) = 0
<=> x + 1 = 0 hoặc -3x - 1 = 0
<=> x = -1 hoặc x = 1/-3
Vậy nghiệm phương trình là: S = { -1; -1/3 }
\(ĐKXĐ:x\ne\pm3\)
\(pt\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{x^2-9}=\frac{17}{x^2-9}\)
\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=17\)
Tự dừng bấm Gửi tl
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=17\)
\(\Leftrightarrow12x=17\Leftrightarrow x=\frac{17}{12}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)\(\Leftrightarrow x\left(x+2\right)-\left(x-2\right)=2\)
\(\Leftrightarrow x^2+2x-x+2=2\)\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=0\)không thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x.\left(x+2\right)-\left(x-2\right)}{\left(x-2\right).x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x^2-2x}=\frac{2}{x^2-2x}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(S=\left\{-1;0\right\}\)
\(\left(3x-5\right)\left(-2x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)
\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)
\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)
\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)
\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)
\(\Leftrightarrow3x^2+2+7x=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)
\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{x^2-25}\left(x\ne\pm5\right)\)
\(\Leftrightarrow\frac{x+5}{x-5}+\frac{x-5}{x+5}-\frac{2\left(x^2+25\right)}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}+\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}-\frac{2x^2+50}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}-\frac{2x^2+50}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{x^2+10x+25+x^2-10x+25-2x^2-50}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Rightarrow\frac{0}{\left(x-5\right)\left(x+5\right)}=0\)
=> PT đúng với mọi x khác \(\pm5\)
Refund QB nhìn logic :V
\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{x^2-25}\)
\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{\left(x+5\right)\left(x-5\right)}\)
\(\left(x+5\right)^2-\left(x-5\right)^2=2\left(x^2+25\right)\)
\(20x=2x^2+50\)
\(20x-2x^2-50=0\)
\(2\left(10x-x^2-25\right)=0\)
\(-x^2+10x+25=0\)
\(x^2-10x+25=0\)
\(x^2-2\left(x\right)\left(5\right)+5^2=0\)
\(\left(x-5\right)^2=0\)
\(x-5=0\Leftrightarrow x=5\)
\(ĐKXĐ:x\ne-1;x\ne\frac{2}{3}\)
\(pt\Leftrightarrow\frac{7x-2\left(x+1\right)+\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=1\)
\(\Leftrightarrow7x-2\left(x+1\right)+\left(3x-2\right)=\left(3x-2\right)\left(x+1\right)\)
\(\Leftrightarrow8x-4=3x^2-2x+3x-2\)
\(\Leftrightarrow3x^2-7x+2=0\)
\(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7+5}{6}=2\\x=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)
Tự cho đkxđ nha!!!
<=> \(\frac{x+1-x}{x+1}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2}{3x-2}\)
<=> \(\frac{3x-2}{\left(3x-2\right)\left(x+1\right)}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)}\)
<=> \(\frac{7x-2x-2-3x+2}{\left(3x-2\right)\left(x+1\right)}=0\)
<=> \(\frac{2x}{\left(3x-2\right)\left(x+1\right)}=0\)
=> 2x = 0
<=> x = 0 (TM)
Vậy ...
Đkxđ: \(\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)
\(\frac{x+3}{x-2}+\frac{x+2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)x}=\frac{2x\left(x-2\right)}{x\left(x-2\right)}\)
\(\Rightarrow x\left(x+3\right)+\left(x-2\right)\left(x+2\right)=2x\left(x-2\right)\)
\(\Leftrightarrow x^2+3x+x^2-4=2x^2-4x\)
\(\Leftrightarrow x^2+3x+x^2-2x^2+4x=4\)
\(\Leftrightarrow7x=4\)
\(\Leftrightarrow x=\frac{4}{7}\)
\(x^3-2x=-x^2+2\)
\(\Leftrightarrow x^3+x^2-2x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Ta có: \(x^3-2x=-x^2+2\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow x^2.\left(x+1\right)-2.\left(x+1\right)=0\)
5\(\Leftrightarrow\left(x+1\right).\left(x^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm\sqrt{2}\end{cases}}\)
Vậy \(S=\left\{-\sqrt{2};-1;\sqrt{2}\right\}\)