Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(x^4+2x^2+1=\left(x^2+1\right)^2\) mà \(x^2\ge0\Rightarrow x^2+1>0\Rightarrow\left(x^2+1\right)^2>0\)với mọi x.Nên x-3=0 .Từ đó suy ra x=3
\(x^4-2x^3+3x^2-2x+1=0\)
Chia cả hai vé cho \(x^2\)
\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)
\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt x+1/x = a, ta có:
\(a^2-2a+1=0\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2+1=x\)
\(\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)
Do đó phương trình vô nghiệm
g) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Rightarrow-2\left(2x-5\right)=0\Rightarrow x=\dfrac{5}{2}\)
i) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\Rightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
\(2x^2-2x=0\)
\(2x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy......
\(x^3+2x-3=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+3\right)=0\)
Ta có: \(x^2+x+3=\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+3-\left(\dfrac{1}{2}\right)^2\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\) (1)
Mà \(\left(x-1\right)\left(x^2+x+3\right)=0\) từ (1) \(\Rightarrow x-1=0\Leftrightarrow x=1\)
Vậy x = 1
\(x^3-x+3x-3=0\)
\(\Leftrightarrow x\left(x^2-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+3\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}=0\left(vl\right)\end{matrix}\right.\)
vậy \(S=\left\{1\right\}\)