Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x/2 = y/3 = z/5 = k
=> x = 2k ; y = 3k ; z = 5k
vì xyz = 810
hay 2k . 3k . 5k = 810
30k3 = 810
k3 = 27
=> k = 3
Từ đó suy ra : a = 6 ; b = 9 ; z = 15
Vậy ...
Gọi \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow x.y.z=2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow x=3.2=6\)
\(y=3.3=9\)
\(z=3.5=15\)
Vậy x = 6; y = 9; z = 15
Bài 2:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và\(x+y+z=49\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{49}{10}\)
\(\Rightarrow\hept{\begin{cases}x=2.\frac{49}{10}=\frac{49}{5}\\y=3.\frac{49}{10}=\frac{147}{10}\\x=5.\frac{49}{10}=\frac{49}{2}\end{cases}}\)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7};2x+3y-z=124\)
Ta có:
\(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\hept{\begin{cases}x=15.2=30\\y=20.2=40\\z=28.2=56\end{cases}}\)
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
b) \(x:y:z=2:3:5\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(x.y.z=810\Rightarrow2k.3k.5k=810\Rightarrow30k^3=810\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
đặt x\2=y\3=z\5=k
=>x=2k
y=3k
z=5k
thay x=2k;y=3k;z=5k vào x.y.z=810 ta được:
2k.3k.5k=810
30k3=810
k3=27
k3=33
=>k=3
=>x=2.3=6
y=3.3=9
z=5.3=15
Đặt k ra:x/2=y/3=z/5=k
=>x=2k ; y=3k ; z=5k
Thay x=2k ; y=3k ; z=5k vào biểu thức x.y.z=810
=> 2k.3k.5k=810
30k3 =810
k3 =810:30=27
k =9
Khi đó x=2.9=18
y=3.9=27
z=5.9=45
sai roi ban oi