
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)
Vậy x = 10, y = 10
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)
Vậy ...
\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)
Vậy ....
d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)
Vậy ...

A) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3.4}=\frac{z}{3.5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)s
Áp dụng tính chất dãy tỉ số bằng nhau
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
B) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
=> \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
xy = 10
=> 2k . 5k = 10
=> 10 . k2 = 10
=> k2 = 1
=> \(\hept{\begin{cases}k=-1\\k=1\end{cases}}\)
=> Với \(\hept{\begin{cases}k=-1\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\\k=1\Rightarrow\hept{\begin{cases}x=2\\y=5\hept{\begin{cases}\\\end{cases}}\end{cases}}\end{cases}}\)

P/s: Vì lười nên chị viết tắt nha.
1) Áp dụng tính chất... ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3=-12\\y=-4.5=-20\end{cases}}\)
2) Có: \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng tính chất... ta có: \(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.11=33\end{cases}}\)
3) tương tự 2)
4), 8) và 9) tương tự 1)
5) Có: \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất... (Tương tự các phần trên).
6) và 7) tương tự 5)
10) 4x = 5y phải không ? Vậy vẫn tương tự 5)

x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1)
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra:
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau)
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30

\(\frac{x}{3}=\frac{y}{5}\)và x + y = 16
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{5}=2\Rightarrow y=2.5=10\)
Vậy...