Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^3-3y^2=65-3y\)
\(\Leftrightarrow x^2+y^3-3y^2+3y-1=64\)
\(\Leftrightarrow x^2+\left(y-1\right)^3=64\)
Do \(64-x^2\le64\forall x\Rightarrow\left(y-1\right)^3\le64\)
Vì y là STN \(\Rightarrow y-1\in\left\{0;1;2;3;4\right\}\)
\(\Leftrightarrow y\in\left\{1;2;3;4;5\right\}\)
Với y = 1 \(\Rightarrow x^2=64\Rightarrow x=\pm8\)
Với y = 2 \(\Rightarrow x^2=63\left(L\right)\)
Với y = 3 \(\Rightarrow x^2=56\left(L\right)\)
Với \(y=4\Rightarrow x^2=37\left(L\right)\)
Với y = 5 \(\Rightarrow x^2=0\) \(\Rightarrow x=0\)
Vậy ...
P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y
= ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)
= ( x+ y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+ y)
= ( x+ y)^3 - 3 ( x+ y)^2 + 3(x +y)
Thay x+ y = 101 ta có :
= 101^3 - 3.101^2 + 3.101
= 101 . ( 101^2 - 3.101 + 3 )
= 101 .9901
= 1000001
\(\left(x+y\right)^3-x^3-y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2\)
\(=3xy\left(x+y\right)\)
\(a,\left(2x+3y\right)^2-4\left(2x+3y\right)\)
\(=\left(2x+3y\right)\left(2x+3y-4\right)\)
\(b,\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]\)
\(=\left(x+y\right).3x\)
\(c,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
Bài giải:
\(x^3-3x^2+3x^2y+3xy^2+y ^3-3y^2-6xy+3x+3y+2012\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(6xy+3x^2+3y^2\right)+\left(3x+3y\right)+2012\)
\(=\left(x+y\right)^3-3\left(2xy+x^2+y^2\right)+3\left(x+y\right)+2012\)
\(=101^3-3.101^2+3.101+2012\)
\(=101^3-3.101^2+3.101-1+2013\)
\(=100^3+2013=1002013\)
Tự kết luận nha bạn ^^
Bài 2: Ta có :\(x^3-6x^2y+12xy^2-8y^3=-8\)
\(\Leftrightarrow\left(x-2y\right)^3=\left(-2\right)^3\)
\(\Rightarrow x-2y=-2\) (*)
\(3x^2-12xy+12y^2=3.\left(x^2-4xy+4y^2\right)=3.\left(x-2y\right)^2\)
Thay (*) vào bt ta được: \(3.\left(-2\right)^2=12\)
\(B=x^3-3x^2+3xy^2+3x^2y+y^3-3y^2-6xy+3x+3y+2012\\ =\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\\ =\left[\left(x+y\right)^3-3\left(x+y\right)^3+3\left(x+y\right)-1\right]+2013\\ =\left(x+y-1\right)^3+2013\)thay x+y=101 vào ta có
\(B=\left(101-1\right)^3+2013=1002013\)
\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)
\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)
\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)
\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)
\(\Leftrightarrow P=x^3+3x^2y+3xy^2+y^3-3x^2-6xy-3y^2+3x+3y+2015\)
\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)
\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)
\(\Leftrightarrow P=1030301-30603+303+2015\)
\(\Leftrightarrow P=999698+303+2015\)
\(\Leftrightarrow P=1000001+2015\)
\(\Leftrightarrow P=1002016\)
\(P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2017\)
\(=\left(x+y-1\right)^3+2018\)
\(=100^3+2018\)