K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

\(x^2+y^3-3y^2=65-3y\)

\(\Leftrightarrow x^2+y^3-3y^2+3y-1=64\)

\(\Leftrightarrow x^2+\left(y-1\right)^3=64\)

Do \(64-x^2\le64\forall x\Rightarrow\left(y-1\right)^3\le64\)

Vì y là STN \(\Rightarrow y-1\in\left\{0;1;2;3;4\right\}\)

\(\Leftrightarrow y\in\left\{1;2;3;4;5\right\}\)

Với y = 1 \(\Rightarrow x^2=64\Rightarrow x=\pm8\)

Với y = 2 \(\Rightarrow x^2=63\left(L\right)\)

Với y = 3 \(\Rightarrow x^2=56\left(L\right)\)

Với \(y=4\Rightarrow x^2=37\left(L\right)\)

Với y = 5 \(\Rightarrow x^2=0\) \(\Rightarrow x=0\)

Vậy ...

25 tháng 3 2019

cách làm khá dài , ở chỗ y - 1 , bạn thay vào hộ mik luôn nhé , tính x^2 cho đỡ khổ

4 tháng 8 2015

P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y

         = ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)

         = ( x+  y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+  y)

         = ( x+  y)^3 - 3 ( x+ y)^2 + 3(x +y)

Thay x+  y = 101 ta có :

        = 101^3 - 3.101^2 + 3.101

         = 101 . ( 101^2 - 3.101 + 3 )

         = 101 .9901

        =  1000001

1000001

chắc chắn 100%

2 tháng 8 2018

\(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2\)

\(=3xy\left(x+y\right)\)

2 tháng 8 2018

\(a,\left(2x+3y\right)^2-4\left(2x+3y\right)\)

\(=\left(2x+3y\right)\left(2x+3y-4\right)\)

\(b,\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]\)

\(=\left(x+y\right).3x\)

\(c,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)

\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)

3 tháng 10 2018

Bài giải:

\(x^3-3x^2+3x^2y+3xy^2+y ^3-3y^2-6xy+3x+3y+2012\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(6xy+3x^2+3y^2\right)+\left(3x+3y\right)+2012\)

\(=\left(x+y\right)^3-3\left(2xy+x^2+y^2\right)+3\left(x+y\right)+2012\)

\(=101^3-3.101^2+3.101+2012\)

\(=101^3-3.101^2+3.101-1+2013\)

\(=100^3+2013=1002013\)

Tự kết luận nha bạn ^^

3 tháng 10 2018

<=>P=(x3+3x2y+3xy2+y3)+(-3x2-3y2)-6xy+(3x+3y)+2012

<=>P=(x+y)3-3(x2+y2)-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+6xy-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+3(x+y)+2012

<=>P=1013-3.1012+3.101+2012

=>P=1002013

29 tháng 6 2017

Bài 2: Ta có :\(x^3-6x^2y+12xy^2-8y^3=-8\)

\(\Leftrightarrow\left(x-2y\right)^3=\left(-2\right)^3\)

\(\Rightarrow x-2y=-2\) (*)

\(3x^2-12xy+12y^2=3.\left(x^2-4xy+4y^2\right)=3.\left(x-2y\right)^2\)

Thay (*) vào bt ta được: \(3.\left(-2\right)^2=12\)

29 tháng 6 2017

Bài 3: Ta có: a+b=13

=> (a+b)3=2197

<=> a3 + b3 + 3ab.(a+b)=2197

<=> a3 + b3 +3.9.13=2197

=> a3 + b3 =1846

27 tháng 6 2018

\(B=x^3-3x^2+3xy^2+3x^2y+y^3-3y^2-6xy+3x+3y+2012\\ =\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\\ =\left[\left(x+y\right)^3-3\left(x+y\right)^3+3\left(x+y\right)-1\right]+2013\\ =\left(x+y-1\right)^3+2013\)thay x+y=101 vào ta có

\(B=\left(101-1\right)^3+2013=1002013\)

21 tháng 11 2017

\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)

21 tháng 11 2017

\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)

\(\Leftrightarrow P=x^3+3x^2y+3xy^2+y^3-3x^2-6xy-3y^2+3x+3y+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)

\(\Leftrightarrow P=1030301-30603+303+2015\)

\(\Leftrightarrow P=999698+303+2015\)

\(\Leftrightarrow P=1000001+2015\)

\(\Leftrightarrow P=1002016\)

\(P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2017\)

\(=\left(x+y-1\right)^3+2018\)

\(=100^3+2018\)