Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(5x-15y=5\left(x-3y\right)\)
b) \(\dfrac{3}{5}x^2+5x^4-x^2y=x^2\left(\dfrac{3}{5}+5x^2-y\right)\)
c) \(14x^2y^2-21xy^2+28x^2y=7xy\left(2xy-3y+4x\right)\)
d) \(\dfrac{2}{7}x\left(3y-1\right)-\dfrac{2}{7}y\left(3y-1\right)=\dfrac{2}{7}\left(3y-1\right)\left(x-y\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
f) \(\left(x+y\right)^2-4x^2=\left(-x+y\right)\left(3x+y\right)\)
g) \(27x^3+\dfrac{1}{8}=\left(3x+\dfrac{1}{2}\right)\left(6x^2+1,5x+\dfrac{1}{4}\right)\)
h) \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3=2y\left(3x^2+y\right)\)
Bài 2:
a) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\\x+2=0\Rightarrow x=-2\end{matrix}\right.\)
b) \(x\left(3x-2\right)-5\left(2-3x\right)=0\)
\(\Rightarrow x\left(3x-2\right)+5\left(3x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\Rightarrow x=\dfrac{2}{3}\\x+5=0\Rightarrow x=-5\end{matrix}\right.\)
c) \(\dfrac{4}{9}-25x^2=0\)
\(\Rightarrow\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-5x=0\Rightarrow x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0\Rightarrow x=\dfrac{-2}{15}\end{matrix}\right.\)
d) Có tới 2 dấu "=".
bài 1 dễ mk ko lm nữa nhé
bafi2:
a,x(x+1)(x+2)=0
x=0 ; x=-1 ; x=-2
b,x(3x-2)+5(3x-2)=0
(x+5)(3x-2)=0
x=-5 ; x=2/3
c,
(2/3)2- (5x)2=0
(2/3-5x)(2/3+5x)=0
x=+-2/15
d, X2-2*1/2x+(1/2)2=0
(X-1/2)22=0
X=1/2
x2 + y2 + z2 - xy - 3y - 2z + 4 = 0
\(\Leftrightarrow\)(x2 - xy +\(\frac{y^2}{4}\)) + (\(\frac{3y^2}{4}\) - 3y + 3) + (z2 - 2z + 1) = 0
\(\Leftrightarrow\)(x -\(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0
\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)
Lời giải:
Nhân $4$ vào cả hai vế, phương trình trở thành:
\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)
Vì \((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên
\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)
Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)
Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT
1)Thấy: x=0;y=0 không phải là nghiệm của hệ.
\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)
Trừ vế theo vế hai phương trình,đc:
\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)
\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:
\(26x^4-426x^2-1728=0\)
\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé
\(4x^2+4y^2+4z^2-4xy-12y-8z+12< 0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2< 4-4\left(z-1\right)^2\)
Do \(\left(2x-y\right)^2+3\left(y-2\right)^2\Rightarrow4-4\left(z-1\right)^2>0\)
\(\Rightarrow\left(z-1\right)^2< 1\Rightarrow z-1=0\Rightarrow z=1\)
\(\Rightarrow\left(2x-y\right)^2< 3-3\left(y-2\right)^2\)
Tương tự ta có \(3-3\left(y-2\right)^2>0\Rightarrow y-2=0\Rightarrow y=2\)
\(\left(2x-2\right)^2< 3\Rightarrow\left(x-1\right)^2< \frac{3}{4}\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)
pt đầu suy ra \(\sqrt{x+3}=2\sqrt{y-1}\)
pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)
Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1
\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)
\(8\sqrt{y+1}+3y-21=0\)
Đặt \(\sqrt{y+1}=t\)
=> y = t2 - 1
=> 8t + 3(t2 -1) -21 =0
3t2 + 8t - 24 = 0
=> t = ...
=> y = t2 - 1
=> \(\sqrt{x+3}=2\sqrt{y-1}\)
=> x =...
b) Trừ hai pt cho nhau ta có:
x2 - y2 = 3(y - x)
(x - y) (x + y + 3) = 0
=> x = y hoặc x + y + 3 = 0
Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm
Bài 1
d, \(x^2+2xy+y^2-2x-2y+1\)
\(\Rightarrow x^2+y^2=1+2xy-2y-2x\)
\(\Rightarrow\left(x+y-1\right)^2\)
Bài 2:
a, \(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1=x^2=5x+2x+10\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\)
b,\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
c, \(4x^2-9=0\)
\(\Leftrightarrow4x^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\\frac{3}{2}\end{matrix}\right.\)
d,\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow16x^2-40x+25-\left(9x^2-24x+16\right)=0\)
\(\Leftrightarrow16x^2-40x+25-9x^2+24x-16=0\)
\(\Leftrightarrow7x^2-16x+9=0\)
\(\Leftrightarrow x=\frac{-\left(-16\right)\pm\sqrt{\left(-16\right)^2-4.7.9}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{256-252}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{4}}{14}\)
\(\Leftrightarrow x=\frac{16\pm2}{14}\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{16+2}{14}\\\frac{16-2}{14}\end{matrix}\right.\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{9}{7}\\1\end{matrix}\right.\)
1.a)\(3x-3y+x^2-2xy+y^2\)
\(=3\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3+x-y\right)\)
d)\(x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y+1\right)^2\)
2.a)\(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1-x^2-7x-10=0\)
\(\Leftrightarrow-5x-9=0\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\). Vậy \(S=\left\{-\frac{9}{5}\right\}\)
b)\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\).Vậy \(S=\left\{-3;-5\right\}\)
c)\(4x^2-9=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\). Vậy \(S=\left\{\pm\frac{3}{2}\right\}\)
d)\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(4x-5+3x-4\right)\left(4x-5-3x+4\right)=0\)
\(\Leftrightarrow\left(7x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{7}\\x=1\end{matrix}\right.\). Vậy \(S=\left\{1;\frac{9}{7}\right\}\)
3.Ta có:
8x^2-26x+m 2x-3 4x-7 -14x+m m+21
Để \(A\left(x\right)⋮B\left(x\right)\) thì: \(m+21⋮2x-3\)
\(\Rightarrow m+21=0\)
\(\Rightarrow m=-21\)
Vậy...!
tinh x,y