
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)ĐK : \(x\ne y;x\ne-y;x;y\ne0\)
\(=\left(\frac{x-y}{\left(x-y\right)\left(x+y\right)^2}-\frac{x+y}{\left(x-y\right)\left(x+y\right)^2}\right):\frac{4xy}{y^2-x^2}\)
\(=\frac{2y}{\left(x-y\right)\left(x+y\right)^2}.\frac{\left(x-y\right)\left(x+y\right)}{4xy}=\frac{1}{2x\left(x+1\right)}\)

\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)

Ta có:
a) 6x2y - 3y2 - 2x2 + y = (6x2y - 2x2) - (3y2 - y) = 2x2(3y - 1) - y(3y - 1) = (2x2 - y)(3y - 1)
b) 2x2 + x - 4xy - 2y + 2x + 1 = (x2 + x) - (4xy + 2y) + (x2 + 2x + 1) = x(x + 1) - 2y(2x + 1) + (x + 1)2
= (x + x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1 - 2y)
c) 16x2y - 4xy2 - 4x3 + x2y = 4xy(4x - y) - x2(4x - y) = (4xy - x2)(4x - y)
d) 4x2 - 20x + 25 - 36y2 = (2x - 5)2 - (6y)2 = (2x - 5 - 6y)(2x - 5 + 6y)
e) x2 - 4y2 + 6x - 4y + 8 = (x2 + 6x + 9) - (4y2 + 4y + 1) = (x + 3)2 - (2y + 1)2 = (x + 3 - 2y - 1)(x + 3 + 2y + 1) = (x + 2 - 2y)(x + 4 + 2y)
g) Ta có : x10 + x5 + 1
= (x10 - x) + (x5 - x2) + (x2 + x + 1)
= x(x9 - 1) + x2(x3 - 1) + (x2 + x + 1)
= x(x3 - 1)(x6 + x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x7 + x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x8 - x7 + x 5 - x4 + x2 - x + x4 + x3 + x2 + 1)
= (x2 + x + 1)(x8 - x7 + x5 + x3 - x + 1)
h) TT trên (dài dòng ktl)

a, \(x^2+4xy-21y^2\)
\(=x^2-3xy+7xy-21y^2\)
\(=x\left(x-3y\right)+7y\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+7y\right)\)
b, \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+y\right)\)
c, \(x^2+4xy-21y^2\)
(giống câu a)
d, \(x^2-4xy+10y^2\)
(bạn xem lại đề nhá)
a, \(x^2+4xy-21y^2\)
= \(\left(x-3y\right).\left(x+7y\right)\)
b, \(5x^2+6xy+y^2\)
= \(\left(x+y\right).\left(5x+y\right)\)
c, \(x^2+4xy-21y^2\)
= \(\left(x-3y\right).\left(x+7y\right)\)
d,\(x^2-4xy+10y^2\)
= \(x^2-2xy-2xy+10y^2\)
= \(x.\left(x-2y\right)-2y.\left(x+5y\right)\)
= ....................

a) \(\left(x-y\right)^2+2xy\)
\(=x^2-2xy+y^2+2xy\)
\(=x^2+y^2\left(đpcm\right)\)
b) \(\left(x-y\right)^2+4xy\)
\(=x^2-2xy+y^2+4xy\)
\(=x^2+2xy+y^2\)
\(=\left(x+y\right)^2\left(đpcm\right)\)
a, Ta có:\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\left(x-y\right)^2+2xy\left(ĐCCM\right)\)
b,Ta có:\(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Leftrightarrow\left(x+y\right)^2=x^2-2xy+4xy+y^2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x-y\right)^2+4xy\left(ĐCCM\right)\)

a) x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
b) x2 - 2xy + y2 - 1
= ( x2 - 2xy + y2 ) - 1
= ( x - y )2 - 12
= ( x - y - 1 )( x - y + 1 )
c) x2 - 2xy + y2 - 4
= ( x2 - 2xy + y2 ) - 4
= ( x - y )2 - 22
= ( x - y - 2 )( x - y + 2 )
d) x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
e) 25 - x2 + 4xy - 4y2
= 25 - ( x2 - 4xy + 4y2 )
= 52 - ( x - 2y )2
= ( 5 - x + 2y )( 5 + x - 2y )
f) x2 + y2 - 2xy - 4z2
= ( x2 - 2xy + y2 ) - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y - 2z )( x - y + 2z )

\(x^2-4xy+y^2\cdot4=0\)
\(\left(x-2y\right)^2=0\)
\(x-2y=0\)
\(x=2y\)
\(x^2+2x+1-y^2=0\)
\(\left(x+1\right)^2-y^2=0\)
\(\left(x+1-y\right)\left(x+1+y\right)=0\)( Bạn làm tiếp nếu có thể )
\(\left(x+y\right)^2-9y^2=0\)
\(\left(x+y-3y\right)\left(x+y+3y\right)=0\)
\(\left(x-2y\right)\left(x+4y\right)=0\)( Tương tự trên )
\(x^2-4xy+y^2.4=0\)
\(x^2-2x.2y+\left(2y\right)^2=0\)
\(\left(x-2y\right)^2=0\)
\(\Rightarrow x-2y=0\)
\(\Rightarrow x=2y\)
Vậy \(x=2y\)
\(x^2+2x+1-y^2=0\)
\(\left(x^2+2x.1+1^2\right)-y^2=0\)
\(\left(x+1\right)^2-y^2=0\)
\(\left(x+1-y\right)\left(x+1+y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1-y=0\\x+1+y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y-1\\x=-y-1\end{cases}}}\)
Vậy \(x=y-1\)hoặc \(x=-y-1\)
\(\left(x+y\right)^2-9y^2=0\)
\(\left(x+y\right)^2-\left(3y\right)^2=0\)
\(\Rightarrow\left(x+y-3y\right)\left(x+y+3y\right)=0\)
\(\Rightarrow\left(x-2y\right)\left(x+4y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2y=0\\x+4y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\x=-4y\end{cases}}}\)
Vậy \(x=2y\)hoặc \(x=-4y\)
Bài này không có y cho nên mình không tìm x cụ thể được, bạn thông cảm