K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

làm ơn giúp e vs

17 tháng 10 2021

\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)

29 tháng 11 2017

a,\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)

\(=\dfrac{2y}{3\left(x+y\right)^2}\)

b,\(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)

\(=\dfrac{\left(x^2-x\right)+\left(-xy+y\right)}{\left(x^2-x\right)+\left(xy-y\right)}\)

\(=\dfrac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}\)

\(=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)

\(=\dfrac{x-y}{x+y}\)

c,\(\dfrac{3x^2-12x+12}{x^4-8x}\)

\(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-2^3\right)}\)

\(=\dfrac{3\left(x-2\right)^2}{x\left[\left(x-2\right)\left(x^2+2x+4\right)\right]}\)

\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

5 tháng 8 2015

x; y nguyên dương nên 8y2 < 96 =>  y< 96/8 = 12 => y= 1; 4; 9 => y = 1; 2; 3

Với y = 1 => 3x+ 10x + 8 = 96 => 3x2  + 10x - 88 = 0 => 3x- 12x + 22x - 88 = 0 

=> 3x. (x - 4) + 22. (x -4) = 0 => (3x + 22).(x - 4) = 0 => 3x - 22 = 0 hoặc x - 4 = 0 

=> x = 22/3 (Loại) hoặc x = 4 (Nhận)

Với y = 2 => 3x+ 20x + 32 = 96 => 3x+ 20x = 64 => x. (3x + 20) = 64

=> 3x + 20 là ước của 64 mà x nguyên dương nên 3x + 20 > 20 => 3x + 20 = 32; 64 

thử các trường hợp => khồng có số x thỏa mãn

Với y = 3 : tương tự

,(3x-1) mũ 2=9/16
<=> (3x-1)^2 = ( ±3/4)^2
<=> l3x-1l  = 3/4
Hoặc 3x-1 = 3/4
 <=> 3x= 3/4 + 1
<=> x = 7/4 : 3
<=> x= 7/1

13 tháng 8 2023

1)

a) => 16x2 - 8x + 1 - 8(2x2 + 3x - 4x - 6) = 15

=> 16x2 - 8x + 1 - 8(2x2 - x - 6) = 15

=> 16x2 - 8x + 1 - 16x2 + 8x + 48 = 15

=> 49 = 15 (?) (vô lí)

=> Không tìm được x thoả mãn

b) (5x - 2)(x - 2) - 4(x - 3) = x2 + 3

=> 5x2 - 10x - 2x + 4 - 4x + 12 = x2 + 3

=> 5x2 - 16x + 16 = x2 + 3

=> 4x2 - 16x + 16 = 3

=> (2x)2 - 2.2x.4 + 42 = 3

=> (2x - 4)2 = 3

=> \(\left[{}\begin{matrix}2x-4=\sqrt{3}\\2x-4=-\sqrt{3}\end{matrix}\right.\)           \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{3}}{2}\\x=\dfrac{4-\sqrt{3}}{2}\end{matrix}\right.\)

Mong bạn xem lại đề bài!

13 tháng 8 2023

2) 

a) 5x2 - 10xy + 5y2 - 20z2

= 5(x2 - 2xy + y2 - 4z2)

= 5[(x - y)2 - (2z)2]

= 5(x - y - 2z)(x - y + 2z)

b) a3 - ay - a2x + xy

= a(a2 - y) - x(a2 - y)

= (a - x)(a2 - y)

c) 3x2 - 6xy + 3y2 - 12z2

= 3(x2 - 2xy + y2 - 4z2)

= 3[(x - y)2 - (2z)2]

= 3(x - y - 2z)(x - y + 2z)

d) x2 - 2xy + tx - 2ty

= x(x - 2y) + t(x - 2y)

= (x + t)(x - 2y)

13 tháng 12 2021

\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)

\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

21 tháng 7 2015

A = [(x2 - 10xy + 25y2) + 2.(x - 5y).7 + 49 ] + (y2 - 6y + 9) + 1

= [(x -5y)2 + 2.(x - 5y) + 72] + (y - 3)2 + 1 = (x - 5y + 7)2 + (y - 3)2 + 1 \(\ge\) 0 + 0 + 1 = 1

=> GTNN của A bằng 1 khi x - 5y + 7 = 0 và y - 3 = 0 

=> y = 3 và x = 8

B = (x+ xy + \(\frac{y^2}{4}\)) - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + \(\frac{9}{4}\) + \(\frac{3y^2}{4}\) - \(\frac{3y}{2}\) + \(\frac{8023}{4}\)=[ (x + \(\frac{y}{2}\))2  - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + (\(\frac{3}{2}\))2 ] + 3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\)

= (x + \(\frac{y}{2}\) - \(\frac{3}{2}\) )2 +   3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\) \(\ge\) 0 + 0 + \(\frac{7975}{4}\) = \(\frac{7975}{4}\)

=> GTNN của B = \(\frac{7975}{4}\) khi  x + \(\frac{y}{2}\) - \(\frac{3}{2}\) = 0 và \(\frac{y}{2}\)  - 2 = 0 

=> y = 4 và x = -1/2 

nhờ giải giupws em với a 1. Phân tích các đa thức sau thành nhân tử: a)     5x2 – 10xy b)    3x(x – y)  –  6(x – y) c)     2x(x – y) – 4y(y – x) d)    9x2 – 9y2 e)     x2 – xy – x + y f)      xy – xz – y + z 2. Phân tích các đa thức sau thành nhân tử:  a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                          c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2 e)x2 + 10x + 25                f) 25x2 –...
Đọc tiếp

nhờ giải giupws em với a

1. Phân tích các đa thức sau thành nhân tử:

a)     5x2 – 10xy

b)    3x(x – y)    6(x – y)

c)     2x(x – y) – 4y(y – x)

d)    9x2 – 9y2

e)     x2 – xy – x + y

f)      xy – xz – y + z

2. Phân tích các đa thức sau thành nhân tử:

 a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                         

c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2

e)x2 + 10x + 25                f) 25x2 – 20xy + 4y2

      g)9x4 + 24x2 + 16             h) x3 – 125

      i)x6 – 1                            k) x3 + 15x2 + 75x + 125

3. Tìm x biết :

a) 3x2 + 8x = 0              b) 9x2 – 25 = 0          c) x3 – 16x = 0     d) x3 + x = 0.

4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6

 

1
19 tháng 12 2023

Bài `1`

\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)

Bài `3`

\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)

\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)