Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(x^3-3x^2+1-3x\)
\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right)^3-3x\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)^2+3x\right]\)
\(=\left(x+1\right)\left(x^2+2x+1+3x\right)\)
\(=\left(x+1\right)\left(x^2+5x+1\right)\)
\(b,\)\(3x-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(3x^2+3x\right)-\left(10x+10\right)\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(3x-10\right)\left(x+1\right)\)
\(c,\)\(x^4+1-2x^2\)
\(=x^4-x^2-x^2+1\)
\(=\left(x^4-x^2\right)-\left(x^2-1\right)\)
\(=x^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-1\right)\)
\(d,\)\(=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=\left(x^2-x\right)-\left(2x-2\right)\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
\(4x^3-7x^2+3x\)
\(=4x^3-4x^2-3x^2+3x\)
\(=4x^2\left(x-1\right)-3x\left(x-1\right)\)
\(=\left(x-1\right)\left(4x^2-3x\right)=x\left(x-1\right)\left(4x-3\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15\)
\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)-15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-15\)
\(=\left(x^2-5x+4\right)^2+2\left(x^2-5x+4\right)+1-16\)
\(=\left(x^2-5x+4+1\right)^2-4^2\)
\(=\left(x^2-4x+4+1-4\right)\left(x^2-4x+4+1+4\right)\)
\(=\left(x^2-4x+1\right)\left(x^2-4x+9\right)\)
Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha
f(x)=3x3 – 7x2 + 17x–5f(x)
Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là 3x–13x–1. Nên
f(x)= 3x3 – 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)
= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5
= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7
\(x^2\left(x+1\right)-\left(x+1\right)\left(3x+1\right)+7x-x^2\)
\(=x^3+x^2-3x^2-4x-1+7x-x^2\)
\(=x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
Ta có :
\(x^4-3x^2+1\)
\(=\left(x^4-2x^2+1\right)-x^2\)
\(=\left(x^2-1\right)^2-x^2\)
\(=\left(x^2-1-x\right)\left(x^2-1+x\right)\)
Phân tích đa thức thành nhân tử:
a) (x-1)(x-2)(x-3)(x-4)+1
b) (x2+3x+2)(x2+7x+12)+1
c) 12x2-3xy-8xz+2yz
a) \(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\)
\(A=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+1\)
\(A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)
Đặt \(a=x^2-5x+5\)
\(\Leftrightarrow A=\left(a-1\right)\left(a+1\right)+1\)
\(\Leftrightarrow A=a^2-1^2+1\)
\(\Leftrightarrow A=a^2\)
Thay \(a=x^2-5x+5\)vào A ta có :
\(A=\left(x^2-5x+5\right)^2\)
b) \(B=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\)
\(B=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)+1\)
\(B=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]+1\)
\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
Làm tương tự câu a)
c) \(12x^2-3xy-8xz+2yz\)
\(=3x\left(4x-y\right)-2z\left(4x-y\right)\)
\(=\left(4x-y\right)\left(3x-2z\right)\)
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
\(x^4+x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)