K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2020

x2 + x = 0

x (x+1 )= 0

=> x=0 ; x+1=0

                  x=-1

Vậy: S={0;-1}

15 tháng 11 2020

2x-12 = 25

2x-1 = 25

2x = 25+1

2x = 26

x = 26:2

x = 13

Câu 2: 

a: Ta có: \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{378}{395}\\z=2004\end{matrix}\right.\)

b: \(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{3}{2}\right|+\left|x-y-z-\dfrac{1}{2}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\\x-y-z-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{3}{2}\\z=\dfrac{3}{2}\end{matrix}\right.\)

17 tháng 8 2017

\(2x^3-50=0\)

\(\Rightarrow2\left(x^3-25\right)=0\)

\(\Rightarrow x^3-25=0\Rightarrow x^3=25\)

\(\Rightarrow x=\sqrt[3]{25}\)

\(x^2-5x=-6\)

\(\Rightarrow x\left(x-5\right)=-6\)

Xét ước

\(\left(2x-1\right)^2-\left(3x+5\right)=0\)

\(\Rightarrow4x^2-4x+1-3x-5=0\)

\(\Rightarrow4x^2-4-7x=0\)

\(\Rightarrow4x^2-7x=4\)

\(\Rightarrow x\left(4x-7\right)=4\)

Xét ước

\(4x^2-20x+25=0\)

\(\Rightarrow\left(2x-5\right)^2=0\)

\(\Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\)

\(\left(3x-1\right)^2-\left(x-2\right)^2=0\)

\(\Rightarrow\left(3x-1\right)^2=\left(x-2\right)^2\)

\(\Rightarrow\left|3x-1\right|=\left|x-2\right|\)

Xét dấu:v

12 tháng 6 2019

\(\left(x-1\right)^3=27\)

\(\Leftrightarrow\left(x-1\right)^3=3^3\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

\(x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy x = 0 hoặc x = -1

12 tháng 6 2019

\(\left(2x+1\right)^2=25\)

\(\Leftrightarrow\left(2x+1\right)^2=\left(\pm5\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy x = 2 hoặc x = -3

\(\left(2x-3\right)^2=36\)

\(\Leftrightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4,5\\x=-1,5\end{cases}}\)

Vậy x = 4,5 hoặc x = -1,5

 

a: \(\Leftrightarrow25\left(x+1\right)^4-25\left(x+1\right)^2-\left(x+1\right)^2+1=0\)

\(\Leftrightarrow\left[\left(x+1\right)^2-1\right]\left[25\left(x+1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x+2\right)\cdot x\cdot\left(5x+4\right)\left(5x+6\right)=0\)

hay \(x\in\left\{0;-2;-\dfrac{4}{5};-\dfrac{6}{5}\right\}\)

b: \(x^2+x-1=0\)

\(\text{Δ}=1^2-4\cdot1\cdot\left(-1\right)=5\)

Do đó: PT có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{5}}{2}\\x_2=\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

d: \(\Leftrightarrow4x^2-4x+1-5\left(2x-1\right)-6=0\)

\(\Leftrightarrow\left(2x-1\right)^2-5\left(2x-1\right)-6=0\)

=>(2x-1-6)(2x-1+1)=0

=>(2x-7)2x=0

=>x=0 hoặc x=7/2

16 tháng 9 2017

a/ \(x^2=5\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

vậy .....

b/ \(x^2-9=0\)

\(\Leftrightarrow x^2=9\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3^2\\x^2=\left(-3\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy .......( nhầm cái ngoặc)

c/ \(x^2+1=0\)

\(\Leftrightarrow x^2=-1\)

\(x^2\ge0\Leftrightarrow x\in\varnothing\)

Vậy ....

d/ \(\left(x-1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=3^2\\\left(x-1\right)^2=\left(-3\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

Vậy ...

e/ \(\left(2x+3\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+3\right)^2=5^2\\\left(2x+3\right)^2=\left(-5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vậy .....

f/ Ta có :

\(x^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1^2\\x^2=\left(-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy ...

16 tháng 9 2017

\(x^2=5\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

\(\left(x-1\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

\(x^2-9=0\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

\(\left(2x+3\right)^2=25\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\)

\(x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

2 tháng 10 2016

a) x^2 = 9   =>  x=3 hoặc x = -3

b) x^2 = 5   =>  \(x=\sqrt{5}\)

c) x^2 - 4 = 0

 => x^2 = 4             =>   x = 2     hoặc      x = -2

d) x^2 + 1 = 82

=>  x^2 = 81     =>     x = 9 hoặc  x = -9

e)  (2x)^2 = 6 

=>  4 . x^2 = 6     

=> x^2 = 3/2           

=> \(x=\sqrt{\frac{3}{2}}\)

f) (x-1)^2 = 9

=> x-1 = 3     hoặc x - 1 = -3

=> x = 4             hoặc  -2

g) (2x+3)^2  =  25

=> 2x + 3 = 5               hoặc        2x + 3 = -5

=> x = 1                      hoặc          x = -4

2 tháng 10 2016

Ta có: 

a, \(x^2=9\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

b, \(x^2=5\Rightarrow\orbr{\begin{cases}x=2,5\\x=-2.5\end{cases}}\)

Các câu còn lại tương tự nhé bn