Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
\(x^2-2\left(m+1\right)x+2m=0\) (1)
a)
để phương trình có 2 nghiệm phân biệt suy ra \(\Delta'\ge0\)
\(\Delta'=b'^2-ac=\left(m+1\right)^2-1\times2m\)
\(=m^2+2m+1-2m=m^2+1>0\forall m\)
vậy phương trình (1) luôn có 2 nghiệm phân biện với mọi m
b)
kết hợp hệ thức vi-ét và đề bài ta có
\(\begin{cases}x_1+x_2=-\frac{b'}{a}=-\left(m+1\right)\left(#\right)\\x_1x_2=\frac{c}{a}=2m\left(@\right)\\x^2_1+x^2_2=4\left(a\right)\end{cases}\)
(a) tương đương với
\(x_1^2+2x_1x_2+x_2^2+2x_1x_2=4=\left(x_1+x_2\right)^2-2x_1x_2-4=0\)
thay (@) và (#) vào (a) ta có\(\left[-\left(m+1\right)\right]^2-2\times2m-4=0\)
\(\Leftrightarrow m^2+2m+1-4m-4=0\Leftrightarrow m^2-2m-3=0\)
ta thấy a-b+c=0 suy ra \(m_1=-1;m_2=3\)
vậy .....
ta có (2x+1)(x-1)2(2x+3)=(4x2+8x+3)(x2+2x+1)=18
đặt x2+2x+1=a ta có (4a-1)a=18
giải hệ trên ta được 2 nghiệm x=0,5 và x=-2,5
đến đay các ban tự giai tiếp nhé
Pt có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)
\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)
\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)
a: x^2+2xm+m^2=0
Khi m=5 thì pt sẽ là x^2+10x+25=0
=>x=-5
b: Thay x=-2 vào pt, ta được:
4-4m+m^2=0
=>m=2