Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(1:\dfrac{1}{5}\right)\cdot\left(x^{2n}:x^{2n-1}\right)\cdot\left(y^{2n-1}:y^{2n-4}\right)\)
\(=5\cdot x^{2n-2n+1}\cdot y^{2n-1-2n+4}\)
\(=5xy^3\)
\(=\left(1:\dfrac{1}{5}\right)\cdot\left(x^{2n}:x^{2n-1}\right)\cdot\left(y^{2n-1}:y^{2n-4}\right)\)
\(=5x^{2n-2n+1}\cdot y^{2n-1-2n+4}\)
\(=5xy^3\)
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
1)5(x^2-1)+x(1-5x)= x-2
<=>5x2-5+x-5x2=x-2
<=>-5+x=x-2
<=>x-x=-2+5
<=>0x=3(vô lí)
vậy ko tìm được x
(x+y)(x2n - x2n-1 y +x2n-2 y2 -...+x2 y2n-2 - xy2n-1 + y2n)
=x2n+1-x2ny+x2n-1y2-...+x3y2n-2-x2y2n-1+xy2n+x2ny-x2n-1y2+x2n-2y3-...+x2y2n-1-xy2n+y2n+1
=x2n+1+y2n+1+(-x2ny+x2ny)+(x2n-1y2- x2n-1y2)+...+(-xy2n-xy2n)
=x2n+1+y2n+1
vậy x^2n+1 +y^2n+1= (x+y)(x^2n - x^2n-1 y +x^2n-2 y^2 -...+x^2 y^2n-2 - xy^2n-1 + y^2n)
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
Ta co : \(x^{2x+1}+y^{2x+1}=\left(x+y\right)^{2x+1}⋮x+y\forall x;y\)( dpcm )
Vì \(2n+1\)luôn là số lẻ \(\forall x\inℤ\)
\(\Rightarrow\left(x^{2n+1}+y^{2n+1}\right)⋮\left(x+y\right)\)( đpcm )