K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

#)Giải :

\(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\)

\(\Rightarrow\left(x+2\right)^{n+1}-\left(x+2\right)^{n+11}=0\)

\(\Rightarrow\left(x+2\right)^{n+1}.\left[1-\left(x+2\right)^{10}\right]=0\)

\(\Rightarrow\left(x+2\right)^{n+1}=0\)hoặc \(1-\left(x+2\right)^{10}=0\)

Với \(1-\left(x+2\right)^{10}=0\Rightarrow x+2=0\Rightarrow x=-2\)

Với \(1-\left(x+2\right)^{n+1}=0\Rightarrow\left(x+2\right)^{10}=1\Rightarrow\orbr{\begin{cases}x+2=1\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\)

9 tháng 7 2019

Cảm ơn bạn .Kết bạn đi bạn ơi

14 tháng 8 2018

Ta có :(x-1)+(x+4)=(x+1)+(4-x)>3 với 1<x<4

suy ra (x-1)+(x-2)+(y-3)+(x-4)=3 chỉ khi :(x-2)=0và (y-3)=0

vậy X=2    Y=3

23 tháng 4 2018

\(M=x^2-2xy+y^2\)

\(N=y^2+2xy+x^2+1\)

\(a,M+N=\left(x^2-2xy+y^2\right)+\left(y^2+2xy+x^2+1\right)\)

                 \(=x^2-2xy+y^2+y^2+2xy+x^2+1\)

                 \(=\left(x^2+x^2\right)+\left(-2xy+2xy\right)+\left(y^2+y^2\right)+1\)

                 \(=2x^2+2y^2+1\)

\(b,M-N=\left(x^2-2xy+y^2\right)-\left(y^2+2xy+x^2+1\right)\)

                 \(=x^2-2xy+y^2-y^2-2xy-x^2-1\)

                 \(=\left(x^2-x^2\right)+\left(-2xy-2xy\right)+\left(y^2-y^2\right)-1\)

                 \(=-4xy-1\)

20 tháng 8 2017

2x = 8y + 1

2x luôn có chữ số tận cùng là 2 ; 4 ; 8 ; 6 

8y + 1 = 2x nên 8y phải có chữ số tận cùng là 1 ; 3 ; 7 ; 5

Nhưng 8y chỉ có thể có tận cùng là 8 ; 4 ; 2 ; 6

Vậy không tồn tại bất kì giá trị x;y nào thỏa mãn . 

20 tháng 8 2017

bạn ơi, phải là 8^(y+1)

8 tháng 7 2023

,làm ơn giúp mik với ah

 

8 tháng 7 2023

\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)

\(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)

\(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)

\(\dfrac{337.2023}{2}\)

\(\dfrac{\text{681751}}{2}\)

15 tháng 1 2022

\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)

\(=\sqrt{2.\left(n+1\right).n:2-n}\)

\(=\sqrt{n\left(n+1\right)-n}\)

\(=\sqrt{n^2+n-n}\)

\(=\sqrt{n^2}\)

\(=n\)

21 tháng 5 2021

`M+N`

`=2x^{2}-2xy-3y^{2}+1+x^{2}-2xy+3y^{2}+1`

`=(2x^{2}+x^{2})-(2xy+2xy)+(3y^{2}-3y^{2})+1+1`

`=3x^{2}-4xy+2`

`M-N`

`=2x^{2}-2xy-3y^{2}-(x^{2}-2xy+3y^{2}+1)`

`=2x^{2}-2xy-3y^{2}-x^{2}+2xy-3y^{2}-1`

`=(2x^{2}-x^{2})+(2xy-2xy)-(3y^{2}+3y^{2})+1-1`

`=x^{2}-6y^{2}

27 tháng 4 2018

\(M\left(x\right)=2x+5\)

Ta có: \(M\left(x\right)\)\(=0\)

\(\Rightarrow2x+5=0\)

\(\Rightarrow2x=-5\)

\(\Rightarrow x=\frac{-5}{2}\)

Vậy \(x=\frac{-5}{2}\)là nghiệm của đa thức \(M\left(x\right)\)

Hc tốt #

27 tháng 4 2018

còn cái N(x) đêu bạn