K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(4m+1\right)^2-8\left(m-4\right)\ge0\)

\(\Leftrightarrow16m^2+33\ge0\left(\text{luôn đúng}\right)\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=4m+1\\x_1x_2=-2\left(m-4\right)\end{matrix}\right.\)

\(B=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(4m+1\right)^2+8\left(m-4\right)\\ B=16m^2+16m-31=4\left(4m^2+4m+1\right)-35=4\left(2m+1\right)^2-35\ge-35\)

Vậy \(B_{min}=-35\Leftrightarrow m=-\dfrac{1}{2}\)

5 tháng 1 2022

bn ơi cho tớ hỏi là trong vi ét: tổng = -b/a còn tích là c/a. lm bài này đc đổi dấu âm của tổng sang tích ạ? nghĩa là tổng= -b/a, tích =c/a sẽ đổi thành tổng= b/a tích = -c/a ạ? tớ tính bài của tớ tính A= 16m^2 +33 mà ko bt lms để đưa về GTNN ạ

24 tháng 3 2022

\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)

 với mọi m => pt có 2 nghiệm phân biệt x1 và x2

theo Viet (điều kiện m > -1/2)

\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)

\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)

dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)

NV
15 tháng 4 2022

\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

15 tháng 4 2022

Em cảm ơn ạ

8 tháng 7 2021

pt sai 

8 tháng 7 2021

Mình xin lỗi mình vừa sửa lại phương trình rồi ạ bạn giúp mình giải với. Mình cảm ơn!

 

NV
10 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

14 tháng 4 2022

Thảo luận 1

đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2

Thảo luận 2

A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2

14 tháng 4 2022

\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)

\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)

\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)

=> pt luôn có 2 no pb x1;x2

ad đl viet có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)

ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)

Δ=(2m+2)^2-4(-m-5)

=4m^2+8m+4+4m+20

=4m^2+12m+24

=4(m^2+3m+6)

=4(m^2+2*m*3/2+9/4+15/4)

=4(m+3/2)^2+15>=15

=>PT luôn có 2 nghiệm

(x1-x2)^2-x1(x1+3)-x2(x2+3)=-4

=>(x1+x2)^2-4x1x2-(x1+x2)^2+2x1x2-3(x1+x2)=-4

=>-2(-m-5)-3(2m+2)=-4

=>2m+10-6m-6=-4

=>-4m+4=-4

=>-4m=-8

=>m=2

Δ=(2m-2)^2-4(-2m+1)

=4m^2-8m+4+8m-4=4m^2>=0

=>Phương trình luôn có hai nghiệm

\(P=\left(x_1+x_2\right)^2-2x_1x_2-4x_1x_2\)

\(=\left(2m-2\right)^2-6\left(-2m+1\right)\)

\(=4m^2-8m+4+12m-6\)

=4m^2+4m-2

=4m^2+4m+1-3=(2m+1)^2-3>=-3

Dấu = xảy ra khi m=-1/2