Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4}{x+5}=\frac{3}{x-4}\)
=> 4.(x - 4) = 3.(x + 5)
=> 4x - 16 = 3x + 15
=> 4x - 3x = 15 + 16
=> 1x = 31
=> x = 31 : 1
=> x = 31
Vậy x = 31.
b) \(5-\frac{2}{x}=\frac{3}{-7}\)
=> \(\frac{2}{x}=5-\frac{-3}{7}\)
=> \(\frac{2}{x}=\frac{38}{7}\)
=> 2 . 7 = 38 . x
=> 14 = 38 . x
=> x = 14 : 38
=> x = \(\frac{14}{38}=\frac{7}{19}\)
Vậy x = \(\frac{7}{19}\).
e) \(\frac{x}{7}=-\frac{15}{14}\)
=> x . 14 = (-15) . 7
=> x . 14 = -105
=> x = (-105) : 14
=> x = \(-7,5=-\frac{15}{2}\)
Vậy x = \(-\frac{15}{2}\).
f) 2 - (2x + 3) = 7
=> 2x + 3 = 2 - 7
=> 2x + 3 = -5
=> 2x = (-5) - 3
=> 2x = -8
=> x = (-8) : 2
=> x = -4
Vậy x = -4.
Chúc bạn học tốt!
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
Bài 1:
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}=\frac{5}{7}\)
Bài 2:
a) \(\frac{x}{7}+\left(\frac{-3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(\Rightarrow\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(\Rightarrow\frac{x}{7}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)
Vậy \(x=\frac{3}{14}\)
b) \(\left(x-1\right)^{x+6}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+4}=0\)
\(\Rightarrow\left(x-1\right)^{x+4}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left(x-1\right)^{x+1}=0\) hoặc \(\left(x-1\right)^2-1=0\)
+) \(\left(x-1\right)^{x+1}=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(x-1\right)^2-1=0\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left(x-1\right)=\pm1\)
+ \(x-1=1\Rightarrow x=2\)
+ \(x-1=-1\Rightarrow x=0\)
Vậy \(x\in\left\{0;2;1\right\}\)
1)
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}\)
\(=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}\)
\(=\frac{5}{7}\)
2) \(\frac{x}{7}+\left(-\frac{3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(=\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(=\frac{x}{7}=\frac{3}{14}-\frac{9}{49}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)
1) \(\frac{x-1}{5}=\frac{x+2}{7}\)
\(\Rightarrow7x-7=5x+10\)
=> 7x - 5x = 10 + 7
2x = 17
x = 8,5
b) \(\frac{x-1}{7}=\frac{5}{x+1}\)
=> x2 - 1 = 35
x2 = 34
\(\Rightarrow x=\sqrt{34};x=-\sqrt{34}\)
c) \(\frac{x+1}{x-2}=\frac{x+2}{x+3}\)
=> x2 + 4x + 3 = x2 - 4
=> x2 - x2 + 4x + 3 = -4
4x + 3 = - 4
4x = -7
x = -7/4
a, ( 152 +và 2/4 - 148 và 3/8 ) : 0,2 = x : 0,3
=> 33/8 : 1/5 = x : 3/10
=> x : 3/10 = 165/8
=> x = 99/10
b, ( 85 và 7/30 - 83 và 5/18 ) : 2 và 2/3 = 0,01x : 4
=> 88/45 : 8/3 = 0,01x : 4
=> 0,01x : 4 = 11/15
=> 0,01x = 44/15
=> x = 880/3
c, x - 1/ x + 5 = 6/7
=> 7( x - 1 ) = 6( x + 5 )
=> 7x - 7 = 6x + 30
=> 7x - 6x = 7 + 30
=> x = 37
d, x2/6 = 24/25
=> x2. 25 = 6 . 24
=> x2.25 = 144
=> x2 = 144/25
=> x = ( 12/5)2 hoặc x = ( -12/5)
g, x - 3/ x + 5 = 5/7
=> 7( x - 3 ) = 5 ( x + 5 )
=> 7x - 21 = 5x + 25
=> 7x - 5x = 21 + 25
=> 2x = 46
=> x = 23
a)
\(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=5.\left(x+5\right)\)
\(\Leftrightarrow7x-21=25+5x\)
\(\Leftrightarrow7x-5x=25+21\)
\(\Leftrightarrow2x=46\)
\(\Leftrightarrow x=23\)
b)
\(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=7.9\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=8\)
Mẫy bài còn lại làm tương tự
\(c,\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Leftrightarrow(x-1)(x+3)=(x-2)(x+2)\)
\(\Leftrightarrow x^2+2x-3=x^2-4\)
\(\Leftrightarrow x^2+2x-3-x^2=-4\)
\(\Leftrightarrow x^2-x^2+2x-3=-4\)
\(\Leftrightarrow2x-3=-4\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)
\(x^2=\frac{5}{7}x\)
<=> \(x^2-\frac{5}{7}x=0\)
<=> \(x\left(x-\frac{5}{7}\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x-\frac{5}{7}=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{7}\end{cases}}\)
Vậy...
\(x^2=\frac{5}{7}.x\)
<=> \(x^2:x=\frac{5}{7}\)
<=> \(x=\frac{5}{7}\)
Vậy _