Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)\(\left(đk:x\in R\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\\\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=2\\x=-8\end{cases}}\\\orbr{\begin{cases}x=1\\x=-7\end{cases}}\end{cases}}\)
\(\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-8\left(tm\right)\end{cases}}\)
\(\orbr{\begin{cases}x-1=0\\x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-8\left(tm\right)\end{cases}}\)
Vậy \(S=\left\{1;2;-8;-7\right\}\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\\\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8=0.\)
\(\Leftrightarrow\left(x-1\right)\left(x+7\right)\left(x-2\right)\left(x+8\right)+8=0.\)
\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0.\)
đặt \(\left(x^2+6x-7\right)=a.\)
\(a\left(a-9\right)+8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=8\end{cases}}\)
thay ròi giả tiếp .
Sửa đề \(\left(8x-11\right)^3+\left(7x-12\right)^3+\left(23-15x\right)^3=0\)
Đặt \(8x-11=a\)
\(7x-12=b\)
\(23-15x=c\)
=> a+b+c=8x-11+7x-12+23-15x=0
Có \(a^3+b^3+c^3-3abc\)
= \(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
=\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
=0 (do a+b+c=0)
=> \(a^3+b^3+c^3=3abc\)
<=> \(0=3\left(8x-11\right)\left(7x-12\right)\left(23-15x\right)\)
=> \(\left[{}\begin{matrix}x=\frac{11}{8}\\x=\frac{12}{7}\\x=\frac{23}{15}\end{matrix}\right.\)
\(x^2-7x+\sqrt{x^2-7x+8}=12\)
\(x^2-7x-12+\sqrt{x^2-7x+8}=0\)
\(x^2-7x+8-20+\sqrt{x^2-7x+8}=0\)
Đặt : \(\sqrt{x^2-7x+8}=t\left(đk:t>0\right)\)
\(\Rightarrow x^2-7x+8=t^2\)
\(\Rightarrow\)Phương trình trở thành : \(t^2+t-20=0\)
\(\Rightarrow\orbr{\begin{cases}t=4\left(tm\right)\\t=-5\left(L\right)\end{cases}}\)
Với \(t=4\Rightarrow\sqrt{x^2-7x+8}=4\)
\(\Rightarrow x^2-7x+8=16\)
\(\Rightarrow x^2-7x+8-16=0\)
\(\Rightarrow x^2-7x-8=0\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
\(x^2-7x+\sqrt{x^2-7x+8}=12\)
\(\Leftrightarrow\sqrt{x^2-7x+8}=12-x^2+7x\)
\(\Leftrightarrow\sqrt{x^2-7x+8}-4=8-x^2+7x\)
\(\Leftrightarrow\frac{x^2-7x+8-16}{\sqrt{x^2-7x+8}+4}=-\left(x-8\right)\left(x+1\right)\)
\(\Leftrightarrow\frac{\left(x-8\right)\left(x+1\right)}{\sqrt{x^2-7x+8}+4}+\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)\left(\frac{1}{\sqrt{x^2-7x+8}+4}+1\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x^2-7x+8}+4}+1>0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)