Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a, \(x^3+12x^2+48x+64=x^3+4x^2+8x^2+32x+16x+64\)
\(=x^2.\left(x+4\right)+8x.\left(x+4\right)+16.\left(x+4\right)\)
\(=\left(x+4\right).\left(x^2+8x+16\right)=\left(x+4\right).\left(x^2+4x+4x+16\right)\)
\(=\left(x+4\right).\left(x+4\right)^2=\left(x+4\right)^3\)(1)
Thay \(x=6\) vào (1) ta được:
\(\left(6+4\right)^3=10^3=1000\)
Vậy...........
b, \(x^3-6x^2+12x-8=x^3-2x^2-4x^2+8x+4x-8\)
\(=x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2-4x+4\right)=\left(x-2\right).\left(x^2-2x-2x+4\right)\)
\(=\left(x-2\right).\left(x-2\right)^2=\left(x-2\right)^3\)(2)
Thay \(x=22\) vào (2) ta được:
\(\left(22-2\right)^3=20^3=8000\)
Vậy.............
Chúc bạn học tốt!!!
Bài 2:
a, \(\left(x+9\right)^3=27=3^3\)
\(\Rightarrow x+9=3\Rightarrow x=-6\)
Vậy.........
b, \(8-12x-x^3+6x^2=-64\)
\(\Rightarrow-\left(x^3-6x^2+12x-8\right)=-64\)
\(\Rightarrow x^3-2x^2-4x^2+8x+4x-8=64\)
\(\Rightarrow x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-4x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-2x-2x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)^2=64\)
\(\Rightarrow\left(x-2\right)^3=4^3\Rightarrow x-2=4\Rightarrow x=6\)
Vậy............
Chúc bạn học tốt!!!
a) \(4x^2-12x+9-4\left(x^2-4\right)-x=8\)
\(4x^2-12x+9-4x^2+16-x=8\)
\(-13x+25=8\)
\(-13x=-17\)
\(x=\dfrac{17}{13}\)
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
1) Ta có : 2x2 + 3x - 5
= 2x2 - 2x + 5x - 5
= 2x(x - 1) + 5(x - 1)
= (x - 1) (2x + 5)
3) x2 + x - 6
= x2 + 2x - 3x - 6
= x(x + 2) - (3x + 6)
= x(x + 2) - 3(x + 2)
= (x - 3)(x + 2)
Ta có : (x + 9)3 = 27
=> (x + 9)3 = 33
=> x + 9 = 3
=> x = 3 - 9
=> x = -6
1,\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)
2,\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\Leftrightarrow\orbr{\begin{cases}5x^2+3x-2=4x^2-3x-2\\5x^2+3x-2=-4x+3x+2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\9x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(3x\right)^2=2^2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=0or-6\\x=-\frac{2}{3}or\frac{2}{3}\end{cases}}\)
3,\(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+4x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x\left(x+4\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=0or-4\end{cases}}\)
4,\(5x\left(x-2000\right)-x+2000=0\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)
5,\(5x\left(x-2\right)-x+2=0\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
6,\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
7,\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(2x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
tí làm nửa kia
8,\(x^2-6x+8=0\Leftrightarrow x^2-6x+9-1=0\Leftrightarrow\left(x-3\right)^2-1^2=0\)
\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
9,\(9x^2+6x-8=0\Leftrightarrow9x^2+6x+1-9=0\Leftrightarrow\left(3x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(3x+1-3\right)\left(3x+1+3\right)=0\Leftrightarrow\left(3x-2\right)\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{4}{3}\end{cases}}\)
10,\(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}x=-1\)
11,\(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
12,\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-4x^2+25=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7-5-2x\right)=0\Leftrightarrow\left(5-2x\right).2=0\Leftrightarrow5-2x=0\Leftrightarrow x=\frac{5}{2}\)
13,\(x\left(2x-1\right)+\frac{1}{3}.\frac{2}{3}x=0\Leftrightarrow x\left(2x-1\right)+\frac{2}{9}x=0\)
\(\Leftrightarrow x\left(2x-1+\frac{2}{9}\right)=0\Leftrightarrow x\left(2x-\frac{7}{9}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{7}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{18}\end{cases}}\)
14,\(4\left(2x+7\right)-9\left(x+3\right)^2=0\Leftrightarrow8x+28-9x^2-54x-81=0\)
\(\Leftrightarrow-9x^2+\left(8x-54x\right)+\left(28-81\right)=0\Leftrightarrow-9x^2-46x-53=0\)
\(\Leftrightarrow9x^2+46x+53=0\)Ta có : \(\Delta'=\frac{2116}{4}-477=529-477=52\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-23+\sqrt{52}}{9}\\x=\frac{-23-\sqrt{52}}{9}\end{cases}}\)
\(x^2+6x+9=\left(x+3\right)\left(8-x\right)\\ \Leftrightarrow x^2+6x+9=8x-x^2+24-3x\\ \Leftrightarrow x^2+6x-8x+x^2+3x=24-9\\ \Leftrightarrow2x^2+x=15\\ \Leftrightarrow x\left(2x+1\right)=15\\ \Leftrightarrow\left[{}\begin{matrix}x=15\\x=7\end{matrix}\right.\)
\(\left(x+3\right)^2=\left(x+3\right)\left(8-x\right)\Leftrightarrow\left(x+3\right)^2-\left(x+3\right)\left(8-x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+3-8+x\right)=0\Leftrightarrow\left(x+3\right)\left(2x-5\right)=0\Leftrightarrow x=-3;x=\frac{5}{2}\)