Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)
\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)
\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
`4(x-6)-x^2 (2+3x)+x(5x-4)+3x^2 (x-1)`
`=4x-24-2x^2 -3x^3 +5x^2-4x+3x^3-3x^2`
`=-24`
\(4\left(x-6\right)-2x\left(2+3x\right)+x\left(5x-4\right)+3x2\left(x-1\right)\\ =4x-24-4x-6x^2+5x^2-4x+6x^2+6x\\ =2x+5x^2-24\)
Cách 1:
PT $\Leftrightarrow x^2(1-y^2)+3xy+y^2=0$
Coi đây là PT bậc 2 ẩn $x$. PT có nghiệm nguyên khi mà:$\Delta=(3y)^2-4y^2(1-y^2)$ là scp
$\Leftrightarrow 4y^4+5y^2$ là scp
$\Leftrightarrow y^2(4y^2+5)$ là scp
$\Leftrightarrow 4y^2+5$ là scp.
Đặt $4y^2+5=a^2$ với $a$ là số tự nhiên.
$\Rightarrow 5=a^2-4y^2=(a-2y)(a+2y)$
Đây là dạng PT tích cơ bản (đơn giản)
Cách 2:
$x^2+y^2+3xy=(xy)^2$$\Leftrightarrow (x+y)^2+xy=(xy)^2$
$\Leftrightarrow (x+y)^2=(xy)^2-xy=xy(xy-1)$
Dễ thấy $xy, xy-1$ nguyên tố cùng nhau. Mà tích của $xy(xy-1)$ là số chính phương nên bản thân mỗi số $|xy|, |xy-1|$ cũng là số chính phương
Đặt $|xy|=a^2; |xy-1|=b^2 với $a,b$ là số tự nhiên.
$\Rightarrow xy=\pm a^2; xy-1=\pm b^2$
Đến đây thì đơn giản rồi, xét từng TH thôi.
`(x^2 - 5x + 7)^2 - (2x - 5)^2 = 0`
`<=> x^4 + 25^2 + 49 - 10x^3 - 70x + 14x^2 - (4x^2 - 20x + 25) = 0`
`<=> x^4 - 10x^3 + 39x^2 - 70x + 49 - 4x^2 + 20x - 25 = 0`
`<=> x^4 - 10x^3 + 35x^2 - 50x + 24 = 0`
`<=> x^4 - 4x^3 - 6x^3 + 24x^2 + 11x^2 - 44x - 6x + 24 = 0`
`<=> (x - 4)(x^3 - 6x^2 + 11x - 6) = 0`
`<=> (x - 4)(x^3 - 3x^2 - 3x^2 + 9x + 2x - 6) = 0`
`<=> (x - 4)(x - 3)(x^2 - 3x + 2) = 0`
`<=> (x - 4)(x - 3)(x - 2)(x - 1) = 0`
`<=> x ∈ {4,3,2,1}`
Vậy `S = {4; 3; 2; 1}`
\(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(x^2-5x+7\right)^2=\left(2x-5\right)^2\)
\(\Leftrightarrow\left|x^2-5x+7\right|=\left|2x-5\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+7=-2x+5\\x^2-5x+7=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\x^2-7x+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\\\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\end{matrix}\right.\)
a)=\(3x^3-15x^2+21x\)
b)\(=-2x^4y-10x^2y+2xy\)
c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)
d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)
e)\(=x^2-4y^2\)
f)\(=-2x^2y^3+y-3\)
g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)
h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)
i)\(=x^2-x-3\)
j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)
a: \(=x^2-36-x^2-14x-49+14x=-85\)
b: \(=\dfrac{5x+35+4x-28-5x-7}{\left(x-7\right)\left(x+7\right)}=\dfrac{4x}{x^2-49}\)
\(a,\left(x+6\right)\left(x-6\right)-\left(x+7\right)^2+14x=x^2-36-x^2-14x-49+14x=-85\\ b,\dfrac{5}{x-7}+\dfrac{4}{x+7}+\dfrac{5x+7}{49-x^2}=\dfrac{5\left(x+7\right)+4\left(x-7\right)-\left(5x+7\right)}{\left(x-7\right)\left(x+7\right)}=\dfrac{5x+35+4x-28-5x-7}{\left(x-7\right)\left(x+7\right)}=\dfrac{4x}{\left(x-7\right)\left(x+7\right)}\)
a: \(=\dfrac{\left(x^2+5\right)\left(x^2-5\right)+2x\left(x^2+5\right)}{x^2+5}=x^2+2x-5\)
b: \(=\dfrac{x^3-2x^2-x^2+2x+3x-6}{x-2}=x^2-x+3\)
Vì \(AB//CD\) nên \(\left\{{}\begin{matrix}\widehat{B}+\widehat{C}=180^0\\\widehat{A}+\widehat{D}=180^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(180^0+40^0\right):2=110^0\\3\widehat{D}=180^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}=180^0-110^0=70^0\\\widehat{D}=60^0\end{matrix}\right.\Rightarrow\widehat{A}=120^0\)
\(\widehat{B}=110^0\)
\(\widehat{C}=70^0\)
\(\widehat{A}=120^0\)
\(\widehat{D}=60^0\)
nếu là phân tích đa thức thành nhân tử:
(x^2+2x)+(3x+6)
=x(x+2)+3(x+2)
=(x+2)(x+3)
đề bài yêu cầu gì hả bạn