K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

nếu là phân tích đa thức thành nhân tử:

(x^2+2x)+(3x+6)

=x(x+2)+3(x+2)

=(x+2)(x+3)

21 tháng 2 2021

đề bài yêu cầu gì hả bạn

1 tháng 2 2017

Kho vay ban

2 tháng 2 2017

Vâng, có ai giúp được k ạ =(((

23 tháng 12 2020

a)\(\frac{x^2+xy}{x^2-y^2}=\frac{x\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x}{x-y}\)

b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5x-2}{x^2-4}\)

\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{-5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)

4 tháng 10 2019

\(A=2x^2+5x-3=2\left(x^2+\frac{5}{2}x-\frac{2}{3}\right)\)

\(=2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{107}{48}\right)\)

\(=2\left[\left(x+\frac{5}{4}\right)^2-\frac{107}{48}\right]\)

\(=2\left[\left(x+\frac{5}{4}\right)^2\right]-\frac{107}{24}\ge\frac{-107}{24}\)

Vậy \(A_{min}=\frac{-107}{24}\Leftrightarrow x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{4}\)

4 tháng 10 2019

giúp mik lên 100 sud với

tên kênh là M.ichibi

11 tháng 6 2019

Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)

\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

11 tháng 6 2019

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)

\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)

\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)

\(=25x^2+45x+15+8+10x-40x-50x^2\)

\(=-25x^2+15x+23\)

\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

21 tháng 8 2021

a) \(\left(x+2\right)^3-x^2.\left(x+6\right)\)

\(=x^3+6x^2+12x+8-x^3-6x^2\)

\(=12x+8\)

b) \(\left(x-2\right)\left(x+2\right)-\left(x+1\right)^3-2x.\left(x-1\right)^2\)

\(=x^2-4-x^3-3x^2-3x-1-2x^3+4x^2-2x\)

\(=-3x^3+2x^2-5x-5\)

21 tháng 2 2020

a) \(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)

\(=2x^3-3x-5x^3-x^2+x^2\)

\(=-3x^3-3x\)

b) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=-11x+24\)

4 tháng 10 2018

x(5x-3)-x2(x-1)+x(x2-6x)-10+3x

=5x2-3x-x3+x2+x3-6x2-10+3x

=(5x2+x2-6x2)+(-3x+3x)+(-x3+x3)-10

= -10

p/s: chúc bn hk tốt

21 tháng 10 2018

x (5x - 3) - x2 (x - 1) + x (x2 - 6x) - 10 + 3x

= 5x2 - 3x - x3 + x2 + x3 - 6x2 - 10 + 3x

=(5x2 + x2 - 6x2) + (x3 - x3) + (3x - 3x) - 10

= -10

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của biến (đpcm).