Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\left|1,7-x\right|-\dfrac{5}{3}=\dfrac{2}{3}\\ \Rightarrow\left|1,7-x\right|=-\dfrac{5}{3}-\dfrac{2}{3}=-\dfrac{7}{3}\left(l\right)\)
Vậy không có giá trị x thoả mãn
\(\left(x-5\right)^2=\left(18\dfrac{1}{3}:5\right).\dfrac{11}{3}\)
\(\Leftrightarrow\left(x-5\right)^2=\dfrac{55}{3}.\dfrac{1}{5}.\dfrac{11}{3}\)
\(\Leftrightarrow\left(x-5\right)^2=\dfrac{121}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=\dfrac{11}{3}\\x-5=-\dfrac{11}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{26}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(x+-\dfrac{1}{9}=-\dfrac{1}{6}\)
\(\Rightarrow x-\dfrac{1}{9}=-\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{1}{6}+\dfrac{1}{9}\)
\(\Rightarrow x=-\dfrac{1}{18}\)
_______________
\(5x-3x-\dfrac{5}{6}=\dfrac{2}{3}\)
\(\Rightarrow2x-\dfrac{5}{6}=\dfrac{2}{3}\)
\(\Rightarrow2x=\dfrac{2}{3}+\dfrac{5}{6}\)
\(\Rightarrow2x=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}:2\)
\(\Rightarrow x=\dfrac{3}{4}\)
a: \(A=\dfrac{2\cdot8^4\cdot27^2+44\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)
\(=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot11\cdot2^9\cdot3^9}{2^7\cdot3^7\cdot2^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9\cdot11}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\cdot11\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)
\(=\dfrac{2\cdot301}{3\cdot31}=\dfrac{602}{93}\)
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)