Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
Với x=2 ta có B=217-216-215-...-22-2-1
B=217-(216+215+...+22+2+1)
Đặt A=216+215+...+22+2+1
2A=217+216+...+23+22+2
2A-A=217-1
A=217-1
B=217-(217-1)=217-217+1=1
\(\dfrac{x+1}{17}+\dfrac{x+16}{2}=\dfrac{x+4}{7}\)
\(\Rightarrow\dfrac{x+1}{17}+1+\dfrac{x+2}{16}+1=\dfrac{x+4}{7}+2\)
\(\Rightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{7}=0\)
\(\Leftrightarrow\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{7}\right)=0\)
mà \(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{4}\ne0\)
\(\Rightarrow x+18=0\Rightarrow x=-18\)
Vậy ....
\(x+\dfrac{1}{17}\)+\(x+\dfrac{2}{16}\)=\(x+\dfrac{4}{7}\)
=> \(2x+\dfrac{25}{136}=x+\dfrac{4}{7}\)
=> \(x=\dfrac{369}{952}\)
Trả lời:
\(\left(x^2\right)^5=\frac{x^{17}}{x^{16}}\)
\(\Rightarrow x^{10}=x\)
\(\Rightarrow x^{10}-x=0\)
\(\Rightarrow x\left(x^9-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^9=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x = 0; x = 1