Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M\left(x\right)=\frac{1}{2}x^3-x^2-3x+3\)
\(N\left(x\right)=\frac{1}{2}x^3+x^2-4x+6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)
\(M\left(x\right)-N\left(x\right)=\frac{1}{2}x^3-x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-\frac{1}{2}x^3\right)+\left(-x^2-x^2\right)+\left(-3x+4x\right)+\left(3-6\right)\)
\(M\left(x\right)-N\left(x\right)=-2x^2+x-3\)
A(x)=M(x)-N(x)=-2x2+x-3=0
đang suy nghĩ tí làm lại sau :v
a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)
\(=10x^3+x^2-8x+12\)
b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy tập nghiệm đa thức trên là S = { -2 ; 2 }
ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)hoặc \(x+5=0\)
- \(x-1=0\Rightarrow x=1\)
- \(x+5=0\Rightarrow x=-5\)
\(\)vậy \(x\in(1;-5)\)
đúng thì k nha
a) Thu gọn và sắp xếp:
M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1
= x4 + 2x2 +1
b)M(1) = 14 + 2.12 + 1 = 4
M(–1) = (–1)4 + 2(–1)2 + 1 = 4
Ta có M(x)=\(x^4+2x^2+1\)
Vì \(x^4\)và \(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x
Nên \(x^4+2x^2+1>0\)
Tức là M(x)\(\ne0\) với mọi x
Vậy đa thức trên không có nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1=x4+2x2+1
b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
*thu gọn đa thức f(x)
f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4
=4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1
=x2+ 1
Chứng tỏ f(x) không có nghiệm
f(x)= x2+ 1
Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)
1 > 0
nên x2+ 1 > 0
mà x2 + 1 = 0 ( vô lí)
=> f(x) vô nghiệm
Ta có :
\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)
\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)
\(f\left(x\right)=x^2+1\)
Lại có :
\(x^2\ge0\)
\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)
Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )
Chúc bạn học tốt ~
\(a,2x^2+4x\)
\(2x^2+4x=0\)
\(\Rightarrow2x\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy nghiệm của đa thức trên là 0;-2
\(b,x^2+4x-5\)
\(x^2+4x-5=0\)
\(\Rightarrow x^2-x+5x-5=0\)
\(\Rightarrow x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức trên là -5;1
a,\(Với:N\left(x\right)=0< =>x^2+4x-5=0\)
Ta dễ dàng nhận thấy \(a+b+c=1+4-5=0\)
Nên phương trình sẽ có 2 nghiệm phân biệt
Với 1 nghiệm bằng 1 và nghiệm thứ hai là -5
Vậy tập nghiệm của đa thức là {1;-5}
b,\(Với:P\left(x\right)=0< =>x^4+x^2+x+1=0\)
\(< =>x^3\left(x+1\right)+\left(x+1\right)=0\)
\(< =>\left(x^3+1\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}}\)\(< =>\orbr{\begin{cases}x=-1\\x=-1\end{cases}}\)
Vậy nghiệm của đa thức trên là -1
Ban Dinh Hoa oi ban hay vao ket ban voi minh di
x2 + 4x + 3
Ta thấy: x \(\ge\)0 với mọi x
=> 4x \(\ge\)0 với mọi x
x2\(\ge\)0 với mọi x
=> x2 + 4x + 3 \(\ge\)3
=> x2 + 4x + 3 vô nghiệm