\(^{x^2+4x+3}\)

Tìm nghiệm của đa thức trên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

Ban Dinh Hoa oi ban hay vao ket ban voi minh di

7 tháng 4 2019

x2 + 4x + 3

Ta thấy: x \(\ge\)0 với mọi x

              => 4x \(\ge\)0 với mọi x

                   x2\(\ge\)0 với mọi x

=> x2 + 4x + 3 \(\ge\)3

=> x2 + 4x + 3 vô nghiệm

9 tháng 5 2018

\(M\left(x\right)=\frac{1}{2}x^3-x^2-3x+3\)

\(N\left(x\right)=\frac{1}{2}x^3+x^2-4x+6\)

\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)

\(M\left(x\right)-N\left(x\right)=\frac{1}{2}x^3-x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)

\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-\frac{1}{2}x^3\right)+\left(-x^2-x^2\right)+\left(-3x+4x\right)+\left(3-6\right)\)

\(M\left(x\right)-N\left(x\right)=-2x^2+x-3\)

A(x)=M(x)-N(x)=-2x2+x-3=0

đang suy nghĩ tí làm lại sau :v

24 tháng 6 2021

a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)

\(=-x^2+2\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)

\(=10x^3+x^2-8x+12\)

b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy tập nghiệm đa thức trên là S = { -2 ; 2 } 

21 tháng 7 2019

a) thay x=1 vào đt P

3.1^3+4.1^2-8.1+1

=3+4-8+1=8-8=0

vậy........................

3 tháng 4 2018

ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)hoặc \(x+5=0\)

  • \(x-1=0\Rightarrow x=1\)
  • \(x+5=0\Rightarrow x=-5\)

\(\)vậy \(x\in(1;-5)\)

đúng thì k nha

3 tháng 4 2018

B=X^2-X+5X-5 =  X(X-1)+5(X-1)=(X-1)(X-5)=0

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

20 tháng 4 2018

*thu gọn đa thức f(x)

f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4

     =4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1

     =x2+ 1

Chứng tỏ f(x) không có nghiệm

f(x)= x2+ 1

Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)

          1 > 0

nên x2+ 1 > 0

mà x+ 1 = 0 ( vô lí)

=> f(x) vô nghiệm

20 tháng 4 2018

Ta có : 

\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)

\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)

\(f\left(x\right)=x^2+1\)

Lại có : 

\(x^2\ge0\)

\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)

Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 ) 

Chúc bạn học tốt ~ 

6 tháng 7 2018

\(a,2x^2+4x\)

\(2x^2+4x=0\)

\(\Rightarrow2x\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)

Vậy nghiệm của đa thức trên là 0;-2

\(b,x^2+4x-5\)

\(x^2+4x-5=0\)

\(\Rightarrow x^2-x+5x-5=0\)

\(\Rightarrow x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)

Vậy nghiệm của đa thức trên là -5;1

19 tháng 6 2020

a,\(Với:N\left(x\right)=0< =>x^2+4x-5=0\)

Ta dễ dàng nhận thấy \(a+b+c=1+4-5=0\)

Nên phương trình sẽ có 2 nghiệm phân biệt 

Với 1 nghiệm bằng 1 và nghiệm thứ hai là -5

Vậy tập nghiệm của đa thức là {1;-5}

b,\(Với:P\left(x\right)=0< =>x^4+x^2+x+1=0\)

\(< =>x^3\left(x+1\right)+\left(x+1\right)=0\)

\(< =>\left(x^3+1\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}}\)\(< =>\orbr{\begin{cases}x=-1\\x=-1\end{cases}}\)

Vậy nghiệm của đa thức trên là -1