K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

\(\left(x+2\right)^3-9\left(x+2\right)=0\)

\(\Leftrightarrow x^3+6x^2+12x+8-9x-18=0\)

\(\Leftrightarrow x^3+6x^2+3x-10=0\)

\(\Leftrightarrow\left(x^3+5x^2\right)+\left(x^2+5x\right)-\left(2x+10\right)=0\)

\(\Leftrightarrow x^2\left(x+5\right)+x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2-x+2x-2\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+5=0\)

hoặc \(x-1=0\)

hoặc \(x+2=0\)

\(\Leftrightarrow\)\(x=-5\)

hoặc \(x=1\)

hoặc \(x=-2\)

Vậy tập nghiệm của phương trình là \(S=\left\{-5;1;-2\right\}\)

26 tháng 3 2021

Phương trình trên vế $a$ sẽ là $+6$

Vế $b$ sẽ là $-3$

do phương trình có dạng $ax+b=0$

2 tháng 3 2023

\(\dfrac{x+3}{x-3}-\dfrac{x}{x+3}=\dfrac{2x^2+9}{x^2-9}\left(x\ne-3;x\ne3\right)\\ < =>\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2x^2+9}{\left(x-3\right)\left(x+3\right)}\)

suy ra

`x^2 +6x+9-x^2 +3x=2x^2 +9`

`<=> 2x^2 - x^2 +x^2 - 6x -3x +9 -9=0`

`<=> 2x^2 -9x=0`

`<=> x(2x-9)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-9=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Bài 9:

Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Bài 8:

a. Khi $m=2$ thì pt trở thành:

$(2^2-9)x-3=2$

$\Leftrightarrow -5x-3=2$

$\Leftrightarrow -5x=5$

$\Leftrightarrow x=-1$ 

b.

Khi $m=3$ thì pt trở thành:

$(3^2-9)x-3=3$

$\Leftrightarrow 0x-3=3$

$\Leftrightarrow 0=6$ (vô lý)

c. Khi $m=3$ thì pt trở thành:

$[(-3)^2-9]x-3=-3$

$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)

Vậy pt vô số nghiệm thực.

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><

\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)

=>\(3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)

=>\(3x^2-12x+12=3x^2+3x-9-9x+9\)

=>\(3x^2-12x+12=3x^2-6x\)

=>-6x=-12

=>x=2

18 tháng 9 2019

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(ĐKXĐ:x\ne\pm2\)

\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)

\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)

\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)

Vậy pt có 2 nghiệm là 1 và -1

18 tháng 9 2019

Điều kện :  \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)

( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)

Chúc bạn học tốt !!!

5 tháng 9 2021

a) \(x^2-4x+4=25\\ \Rightarrow\left(x-2\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-2=-5\\x-2=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

b) \(\left(5-2x\right)^2-16=0\\ \Rightarrow\left(5-2x\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4,5\\0,5\end{matrix}\right.\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\\ \Rightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x+1\right)^2=15\\ \Rightarrow9\left(x+1\right)^2=15\\ \Rightarrow\left(x+1\right)^2=\dfrac{5}{3}\\ \Rightarrow\left[{}\begin{matrix}x+1=-\sqrt{\dfrac{5}{3}}\\x+1=\sqrt{\dfrac{5}{3}}\end{matrix}\right.\)

   \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3+\sqrt{15}}{3}\\x=\dfrac{-3+\sqrt{15}}{3}\end{matrix}\right.\)

5 tháng 9 2021

a)\(\Leftrightarrow\)\(x^2-4x-21=0\)

\(\Leftrightarrow\)\(x^2-7x+3x-21=0\)

\(\Leftrightarrow\)\(x(x-7)+3(x-7)=0\)

\(\Leftrightarrow\)\((x-7)(x+3)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=7\\ x=-3 \end{array} \right.\)

b)\(\Leftrightarrow\)\((5-2x)^2-4^2=0\)

\(\Leftrightarrow\)\((5-2x-4)(5-2x+4)=0\)

\(\Leftrightarrow\)\((-2x+1)(-2x+9)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=\dfrac{1}{2}\\ x=\dfrac{9}{2} \end{array} \right.\)

2 tháng 3 2021

1) `x^2+4-2(x-1)=(x-2)^2`

`<=>x^2+4-2x+2=x^2-4x+4`

`<=>-2x+2=-4x`

`<=>2x=-2`

`<=>x=-1`

.

2) ĐKXĐ: `x \ne \pm 3`

`(x+3)/(x-3)-(x-1)/(x+3)=(x^2+4x+6)/(x^2-9)`

`<=>(x+3)^2-(x-1)(x-3)=x^2+4x+6`

`<=>x^2+6x+9-x^2+4x-3=x^2+4x+6`

`<=>10x+6=x^2+4x+6`

`<=>x^2-6x=0`

`<=>x(x-6)=0`

`<=>x=0;x=6`

.

3) ĐKXĐ: `x \ne \pm 3`

`(3x-3)/(x^2-9) -1/(x-3 )= (x+1)/(x+3)`

`<=>(3x-3)-(x+3)=(x+1)(x-3)`

`<=> 2x-6=x^2-2x-3`

`<=>x^2-4x+3=0`

`<=>x^2-x-3x+3=0`

`<=>x(x-1)-3(x-1)=0`

`<=>(x-3)(x-1)=0`

`<=> x=3;x=1`

Vậy...

\(\Leftrightarrow\left(x+3\right)^2-48x^2=\left(x-3\right)^2\)

\(\Leftrightarrow48x^2=x^2+6x+9-x^2+6x-9\)

\(\Leftrightarrow48x^2-12x=0\)

=>12x(4x-1)=0

=>x=0(nhận) hoặc x=1/4(nhận)