Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
a) Theo đề, ta có:
2.x = 3.y = 4.z
=> 2.x/12 = 3.y/12 = 4.z/12
=> x/6 = y/4 = z/3
mà 2.x + 3.y - 5.z = -1,8
Áp dụng tính chất dãy tỉ số bằng nhau:
x/6 = y/4 = z/3 = 2.x + 3.y - 5.z / 2.6 + 2.4 + 2.3 = -1,8/26 = a
=> x=a.6=b
=> y=a.4=c
=> z=a.3=d
Bn tính ra nhé, thay vào a,b,c,d
Tk cho mk nhé ae!!!!!!!
b) Theo đề, ta có:
2/3.x = 3/4.y = 5/6 .z
=>x/3/2 = y/4/3 = z/6/5
mà 2.y + x + z = -39
Áp dụng tính chất dãy tỉ số bằng nhau:
x/3/2 = y/4/3 = z/6/5 = 2.y + x + z/ 2.4/3 + 3/2 +6/5 =-39/161/30=a
=>x = a.3/2 = b
=>y = a.4/3 = c
=>z = a.6/5 = d
Thay vào a,b,c,d dùm mk, mk ko có máy tính tay nên ko tính đc
Tk cho mk nhé ae!!!!!!!!!!!
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21
Aps dụng tính chất của dãy tỉ số bằng nhau:
x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4
=> x/6 = 7/4 => x= 21/2
y/3 = 7/4 -> y= 21/4
z/3 = 7/4 -> z= 21/4
1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)
\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)
\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)
\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)
Vậy x=-1/6 ; y=1/4 và z = 1/3
3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)
\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)
\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)
Vậy x=7/2 ; y=4 và z=21/2
4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)
\(\frac{x-1}{3}=2\Rightarrow x=7\)
\(\frac{y-2}{4}=2\Rightarrow y=10\)
\(\frac{z-3}{5}=2\Rightarrow z=13\)
Vậy x=7 ; y=10 và z=13
a) x : 2 = y : (-5)
⇒ x/2 = y/(-5)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 =
x/2 = 2 ⇒ x = 2.2 = 4
y/(-5) = 2 ⇒ y = 2.(-5) = -10
Vậy x = 4; y = -10
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8
x/2 = 8 ⇒ x = 8.2 = 16
y/5 = 9 ⇒ y = 8.5 = 40
z/6 = 8 ⇒ z = 8.6 = 48
Vậy x = 16; y = 40; z = 48
c) 2x = 3y = 6z
⇒ x/(1/2) = y/(1/3) = z/(1/6)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12
2x = 12 ⇒ x = 12 : 2 = 6
3y = 12 ⇒ y = 12 : 3 = 4
6z = 12 ⇒ z = 12 : 6 = 2
Vậy x = 6; y = 4; z = 2
d) x/3 = y/2 = z/(-3)
⇒ 2x/6 = 3y/6 = 4z/(-12)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4
x/3 = -4 ⇒ x = -4.3 = -12
y/2 = -4 ⇒ y = -4.2 = -8
z/(-3) = -4 ⇒ z = -4.(-3) = 12
Vậy x = -12; y = -8; z = 12
e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36
x/5 = -36 ⇒ x = -36.5 = -180
y/6 = -36 ⇒ y = -36.6 = -216
z/7 = -36 ⇒ z = -36.7 = -252
Vậy x = -180; y = -216; z = -252
f) x/12 = y/13
⇒ 3x/36 = 2y/26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31
x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31
y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31
z/15 = 26/31 ⇒ z = 26/31 . 15 = 390/31
Vậy x = 312/31; y = 338/31; z = 390/31