Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)
\(\Rightarrow x=10k,y=6k\)
Mà \(xy=60\)
\(\Rightarrow10k6k=60\)
\(\Rightarrow60k^2=60\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=10;y=6\)
+) \(k=-1\Rightarrow x=-10;y=-6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(10;6\right);\left(-10;-6\right)\)
b) Hình như đề sai !!!
c) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
( x, y cùng dấu )
Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{110}{25}=\)số lẽ
a/ Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\left(1\right)\\x^2+y^2=52\left(2\right)\end{cases}}\).
Từ (1) => \(\frac{x^2}{4}=\frac{y^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{52}{29}\)
=> \(\frac{x}{2}=\frac{52}{29}\)=> x = \(\frac{2.52}{29}\approx4\)
=> \(\frac{y}{5}=\frac{52}{29}\)=> y = \(\frac{5.52}{29}\approx9\)
Vậy \(x\approx4\)và \(y\approx9\).
có 2 x bình phương thế bạn sai đề viết lại cho đúngnhé
Sửa đề \(\frac{x^2}{9}=\frac{y^2}{16}\)và \(x^2+y^2=100\)
ADTC dãy tỉ số bằng nhau
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}\Rightarrow\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x^2=_{6^2}^{\left(-6\right)^2}\\y^2=_{8^2}^{\left(-8\right)^2}\end{cases}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2+y^2}{25+16}=\frac{41}{41}=1\)
=> \(\hept{\begin{cases}\frac{x^2}{25}=1\\\frac{y^2}{16}=1\end{cases}}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=16\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm5\\y=\pm4\end{cases}}\)
theo tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2+y^2}{25+16}=\frac{41}{41}=1\)
\(\frac{x^2}{25}=1\Leftrightarrow x^2=25\Leftrightarrow\hept{\begin{cases}x=5\\x=-5\end{cases}}\)
\(\frac{y^2}{16}=1\Leftrightarrow y^2=16\Leftrightarrow\hept{\begin{cases}y=4\\y=-4\end{cases}}\)
vậy cặp x,y thỏa mãn là \(\left\{x=5;y=4\right\}\left\{x=-5;y=-4\right\}\)