Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4x2+4x+1-x2-10x-25=0
`<=>(2x+1)^2-(x+5)^2=0`
`<=>(2x+1-x-5)(2x+1+x+5)=0`
`<=>(x-4)(3x+6)=0`
`<=>(x-4)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}x=2\\x=-2\end{array} \right.\)
b)(x^2+x+7)(x^2+x-7)=(x2+x)2-7x
`<=>(x^2+x)^2-7^2=(x^2+x)^2-7x`
`<=>-7^2=-7x`
`<=>-49=-7x`
`<=>x=7`
Vậy x=7
a) Kết quả 2x(2x – 3). b) Kết quả xy( x 2 – 2xy + 5).
c) Kết quả 2x(x + 1)(x + 4). d) Kết quả 2 5 ( y − 1 ) ( x + y ) .
a) \(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
b) \(=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)
c) \(=3x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(3x+5\right)\)
d) \(=\left(x+y\right)^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
e) \(=x\left(x^2-11x+30\right)\)
f) \(=x\left(x-3\right)+6\left(x-3\right)=\left(x-3\right)\left(x+6\right)\)
Sửa đề: \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{5-x}{2x^2+10x}\)
ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)
Ta có: \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{5-x}{2x^2+10x}\)
\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=\dfrac{5-x}{2x\left(x+5\right)}\)
\(\Leftrightarrow\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(2\left(x+5\right)^2-x\left(x+25\right)=-\left(x-5\right)^2\)
\(\Leftrightarrow2\left(x^2+10x+25\right)-x^2-25x=-\left(x^2-10x+25\right)\)
\(\Leftrightarrow2x^2+20x+50-x^2-25x=-x^2+10x-25\)
\(\Leftrightarrow x^2-5x+50+x^2-10x+25=0\)
\(\Leftrightarrow2x^2-15x+75=0\)
\(\Leftrightarrow2\left(x^2-\dfrac{15}{2}x+\dfrac{75}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{15}{4}+\dfrac{225}{16}+\dfrac{375}{16}=0\)
\(\Leftrightarrow\left(x-\dfrac{15}{4}\right)^2+\dfrac{375}{16}=0\)(vô lý)
Vậy: \(S=\varnothing\)
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...
2D
6
\(x^3+125=\left(x+5\right)\left(x^2-5x+25\right)\)
A là đa thức bậc 1
=>A=x+5
=>B=x^2-5x+25
=>Chọn A
Câu 2. M có bậc 2 + 7 = 9
Chọn D
Câu 6. x³ + 125 = x³ + 5³ = (x + 5)(x² - 5x + 25)
Chọn A
\(-x^2+25=5^2-x^2=\left(5-x\right)\left(5+x\right)\)
\(25-x^2=\left(5-x\right)\left(x+5\right)\)