Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a. 1 - 2y + y2
= (1 - y)2
b. (x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c. 1 - 4x2
= 12 - (2x)2
= (1 - 2x)(1 + 2x)
d. 8 - 27x3
= 23 - (3x)3
= (2 - 3x)(4 + 6x + 9x2)
e. (đề hơi khó hiểu ''x3'' !?)
g. x3 + 8y3
= (x + 2y)(x2 - 2xy + y2)
\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+1\right)\)
\(:\left(1-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)
\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+\dfrac{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)
\(:\left(\dfrac{\text{}\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)
\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)
\(.\left(\dfrac{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}\right)\)
\(A=1\)
\(\sqrt{x^2y^3}+y\sqrt{x^4y}-xy\sqrt{y}\)
\(=xy\sqrt{y}+x^2y\sqrt{y}-xy\sqrt{y}\)
\(=x^2y\sqrt{y}\)
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0