Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(2x+x\left(x-5\right)=3x^2-x\)
\(\Leftrightarrow2x+x^2-5x-3x^2+x=0\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow-2x\left(x+1\right)=0\)
Vì -2≠0
nên \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: x∈{0;-1}
2) Ta có: \(15-5\left(1-2x\right)=12-x\)
\(\Leftrightarrow15-5+10x-12+x=0\)
\(\Leftrightarrow11x-2=0\)
\(\Leftrightarrow11x=2\)
hay \(x=\frac{2}{11}\)
Vậy: \(x=\frac{2}{11}\)
3) Ta có: \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}-5=0\)
\(\Leftrightarrow\frac{-13}{3}-\frac{4}{3}x=0\)
\(\Leftrightarrow\frac{4}{3}x=\frac{-13}{3}\)
hay \(x=\frac{-13}{3}:\frac{4}{3}=\frac{-13}{4}\)
Vậy: \(x=\frac{-13}{4}\)
4) Ta có: \(\left|x-\frac{4}{5}\right|=\frac{3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{5}\\x-\frac{4}{5}=\frac{-3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{5}\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{7}{5}\right\}\)
1. \(2x+x\left(x-5\right)=3x^2-x\)
\(\Leftrightarrow2x+x^2-5x=3x^2-x\)
\(\Leftrightarrow\left(2x-5x+x\right)+\left(x^2-3x^2\right)=0\)
\(\Leftrightarrow-2x-2x^2=0\)
\(\Leftrightarrow-2x\left(1+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\1+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2. \(15-5\left(1-2x\right)=12-x\)
\(\Leftrightarrow15-5+10x=12-x\)
\(\Leftrightarrow\left(15-5-12\right)+\left(10x+x\right)=0\)
\(\Leftrightarrow-2+11x=0\)
\(\Leftrightarrow11x=2\Leftrightarrow x=\frac{2}{11}\)
3. \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\Leftrightarrow\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-5\right)-\left(\frac{1}{3}x+x\right)=0\)
\(\Leftrightarrow-\frac{13}{3}-\frac{4}{3}x=0\)
\(\Leftrightarrow-\frac{4}{3}x=\frac{13}{3}\Leftrightarrow x=-\frac{13}{4}\)
4. \(\left|x-\frac{4}{5}\right|=\frac{3}{5}\)
\(\Rightarrow x-\frac{4}{5}=-\frac{3}{5}\) hoặc \(x-\frac{4}{5}=\frac{3}{5}\)
\(TH1:x-\frac{4}{5}=-\frac{3}{5}\Rightarrow x=\frac{1}{5}\)
\(TH2:x-\frac{4}{5}=\frac{3}{5}\Rightarrow x=\frac{7}{5}\)
a ) x + 5/12 = -2/3
=> x = -2/3 - 5/12
=> x = -8/12 - 5/12
=> x = -13/12
b ) 4/5 + 3/4 : x = 1/2
=> 3/4 : x = 1/2 - 4/5
=> 3/4 : x = 5/10 - 8/10
=> 3/4 : x = -3/10
=> x = 3/4 : -3/10
=> x = -5/2
c ) x/2 + x/3 = 1/4
=> 3x/6 + 2x/6 = 1/4
=> ( 3x + 2x )/6 = 1/4
=> 5x/6 = 1/4
=> 20x/24 = 6/24
=> 20x = 6
=> x = 6 : 20
=> x = 0 , 3
Chúc bạn học giỏi !!!
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)
\(=\dfrac{\left(\dfrac{2}{3}\cdot\dfrac{-3}{4}\right)^2\cdot\dfrac{2}{3}\cdot\left(-1\right)}{\left(\dfrac{2}{5}\cdot\dfrac{-5}{12}\right)^2}=\dfrac{\dfrac{1}{4}\cdot\dfrac{2}{3}\cdot\left(-1\right)}{\dfrac{1}{36}}=\dfrac{-2}{12}:\dfrac{1}{36}=-\dfrac{1}{6}\cdot36=-6\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
a: x/2-x/3=1/4
=>1/6x=1/4
hay x=1/4:1/6=3/2
b: \(\dfrac{1}{2}\cdot x:\dfrac{2}{5}=\dfrac{-3}{2}:\dfrac{5}{4}=\dfrac{-3}{2}\cdot\dfrac{4}{5}=\dfrac{-6}{5}\)
\(\Leftrightarrow x\cdot\dfrac{1}{2}\cdot\dfrac{5}{2}=\dfrac{-6}{5}\)
=>5/4x=-6/5
hay x=-24/25
c: \(\dfrac{2}{3}x-\dfrac{1}{3}x=\dfrac{5}{12}\)
nên 1/3x=5/12
=>x=5/4