Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko viết lại đề
Câu 1: chia ra làm 3 trường hợp
Câu 2:
\(\left(x+2-x+2\right)\left(x+2\right)=0\)
\(4\left(x+2\right)=0\)
\(\Rightarrow x+2=0\)
\(x=-2\)
a) x2-x+(x+1)2=0
PT vô nghiệm
b) x3+x2-4x-4=0
<=>x2.(x+1)-4.(x+1)=0
<=>(x+1)(x2-4)=0
<=>(x+1)(x-2)(x+2)=0
<=>x+1=0 hoặc x-2=0 hoặc x+2=0
<=>x=-1 hoặc x=2 hoặc x=-2
a, x^2(x^2+4)-x^2-4=0
=) x^2(x^2+4)-(x^2+4)=0
=) (x^2+4)(x^2-1)=0
=)(x^2+4)(x-1)(x+1)=0
=) x^2+4=0 =)x^2=4 =)x=2
x-1=0 =)x=1
x+1=0 =)x=-1
b,x^2-25-x-5=0
=)(x+5)(x-5)-(x+5)=0
=)(x+5)(x-6)=0
=)x+5=0 =) x=-5
x-6=0 =) x=6
x2 - 4 = 0
x2 = 4
\(\orbr{\begin{cases}x^2=2^2\\x^2=\left(-2\right)^2\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
3x2 - 75 = 0
3x2 = 75
x2 = 25
\(\orbr{\begin{cases}x^2=5^2\\x^2=\left(-5\right)^2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
( x + 2 )2 = 25
\(\orbr{\begin{cases}\left(x+2\right)^2=5^2\\\left(x+2\right)^2=\left(-5\right)^2\end{cases}}\)
\(\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}}\)
\(\orbr{\begin{cases}x=3\\x=-7\end{cases}}\)
a, \(x^3-7x=0\Leftrightarrow x^2\left(x-7\right)=0\)
\(\left(+\right)x^2=0\Leftrightarrow x=0\)
\(\left(+\right)x-7=0\Leftrightarrow x=7\)
Vậy \(x=0;x=7\)
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^3+8-x^3-2x=0\)
\(\Leftrightarrow8-2x=0\)
\(\Leftrightarrow x=4\)
Vậy x=4
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
\(x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(x^2+x=0\)
\(\Leftrightarrow x^2+x+\frac{1}{4}=\frac{1}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\sqrt{\frac{1}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{1}{4}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)