Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK \(x\le2\)
\(\Rightarrow\sqrt{2-x}=2\Rightarrow2-x=4\Rightarrow x=-2\left(tm\right)\)
b, \(\sqrt{x^2-10x+25}=9\Rightarrow x^2-10x+25=81\Rightarrow x^2-10x-56=0\)
\(\Rightarrow\left(x-14\right)\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}x=14\\x=-4\end{cases}}\)
c. \(\sqrt{9-6x^2+x^4}=x^2+1\Rightarrow9-6x^2+x^4=x^4+2x^2+1\)do \(9-6x^2+x^4\ge0\forall x\)
\(\Rightarrow-8x^2=-8\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
đặt x+5=a\(\left(a\ge0\right)\) khi đó phương trình trở thành:
\(a^2-4+\sqrt{a}+\sqrt{16-a}=0\)
lại có \(\sqrt{a}+\sqrt{16-a}\ge\sqrt{a+16-a}=4\)
nên ta có:
\(a^2-4+\sqrt{a}+\sqrt{16-a}\ge a^2\)
Suy ra \(0\ge a^2\)
\(\Rightarrow a=0\)hay x+5=0
\(\Leftrightarrow x=-5\)
ĐKXĐ: x>=0; y>=1 ; z>=2.
câu 1:Từ giả thiết ta có:
\(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\sqrt{y-1}+1+\left(z-2\right)-2\sqrt{z-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
Vậy x=1;y=2;z=3.
Có gì ko hiểu bạn cứ bình luận phía dưới :)
a)\(pt\Leftrightarrow\sqrt{3x^2-6x+4}+\sqrt{2x^2-4x+6}+x^2-2x-2=0\)
\(\Leftrightarrow\sqrt{3x^2-6x+4}-1+\sqrt{2x^2-4x+6}-2+x^2-2x+1=0\)
\(\Leftrightarrow\dfrac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}+\dfrac{2x^2-4x+6-4}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}+\dfrac{2\left(x-1\right)^2}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1>0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}+2x^2+4x-3=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x-8=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x+2=0\)
\(\Leftrightarrow\dfrac{3x^2+6x+12-9}{\sqrt{3x^2+6x+12}+3}+\dfrac{5x^4-10x^2+9-4}{\sqrt{5x^4-10x^2+9}+2}+2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2>0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
ĐKXĐ: \(\orbr{\begin{cases}x\le-\frac{2}{\sqrt{5}}-1\\x\ge\frac{2}{\sqrt{5}}-1\end{cases}}\)
PT \(\Leftrightarrow5\sqrt{5x^2+10x+1}=35-10x-5x^2\)
\(\Leftrightarrow5\sqrt{5x^2+10x+1}=36-\left(5x^2+10x+1\right)\)
Đặt \(\sqrt{5x^2+10x+1}=y\ge0\)
\(\Rightarrow y^2+5y-36=0\)
\(\Rightarrow\orbr{\begin{cases}y=4\\y=-9\end{cases}}\)
Tự tìm x
Đặt \(\sqrt{x^2-10x+9}=t\left(t\ge0\right)\)
\(\Leftrightarrow x^2-10x+9=t^2\)
\(pt\Leftrightarrow x^2-10x-3+\sqrt{x^2-10x+9}=0\)
\(\Leftrightarrow t^2+t-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-4\left(loai\right)\\t=3\end{matrix}\right.\)
Với t=3\(\Leftrightarrow x^2-10x+9=9\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)