Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2-m^2\geq 0$
$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$
$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)
Khi đó:
$(x_1-x_2)^2+6m=x_1-2x_2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$
$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$
$\Leftrightarrow 4m-6=3x_2$
$\Leftrightarrow x_2=\frac{4}{3}m-2$
$x_1=2(m-1)-x_2=\frac{2}{3}m$
Suy ra:
$x_1x_2=m^2$
$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$
$\Leftrightarrow m(8m-12-9m)=0$
$\Leftrightarrow m(-m-12)=0$
$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Bài 4:
Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$
$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)
Khi đó:
$2x_1^2+4mx_2+2m^2-1\geq 0$
$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$
$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$
$\Leftrightarrow 4m. 2\geq 0$
$\Leftrightarrow m\geq 0$
Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Lời giải:
Ta có: \(\Delta=(m-4)^2-4(-m+3)=m^2-4m+4=(m-2)^2\)
Sử dụng công thức nghiệm của pt bậc 2 suy ra pt có hai nghiệm:
\(x_1=-1; x_2=m-3\)
Ta có: \(x_1^5+x_2^5=31\)
\(\Leftrightarrow -1+(m-3)^5=31\)
\(\Leftrightarrow (m-3)^5=32=2^5\Rightarrow m-3=2\Rightarrow m=5\)
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Ta có: \(\Delta'=\left(m-1\right)^2-\left(-2m+5\right)=m^2-2m+1+2m-5=m^2-4\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow m^2-4>0\) => m < -2 hoặc m > 2
Theo Vi-ét: \(\hept{\begin{cases}x_1+x_2=-2m+2\\x_1x_2=-2m+5\end{cases}}\)
Có: x13 + x23 = 0 => (x1 + x2)(x12 + x22 - x1x2) = 0 => (x1 + x2) [ (x1 + x2)2 - 2x1x2 - x1x2 ] = 0
\(\Rightarrow\orbr{\begin{cases}x_1+x_2=0\left(1\right)\\\left(x_1+x_2\right)^2-3x_1x_2=0\left(2\right)\end{cases}}\)
Từ (1) => -2m + 2 = 0 => -2m = -2 => m = 1 (loại)
Từ (2) => (-2m + 2)2 - 3(-2m + 5) = 0 => 4m2 - 8m + 4 + 6m - 15 = 0 => 4m2 - 2m - 11 = 0 \(\Rightarrow\orbr{\begin{cases}x=\frac{1+3\sqrt{5}}{4}\left(l\right)\\x=\frac{1-3\sqrt{5}}{4}\left(l\right)\end{cases}}\)
Vậy vô nghiệm
Xét \(\Delta'=\left(m-1\right)^2+2m-5=m^2-2m+1+2m-5=m^2-4\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow m^2>4\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Áp dụng hệ thức Vi-et, ta được : \(\hept{\begin{cases}x_1+x_2=-2m+2\\x_1.x_2=-2m+5\end{cases}}\)
Ta có : \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(\Rightarrow\left(2-2m\right)^3-3\left(5-2m\right)\left(2-2m\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m^2-2m-11\right)=0\)
\(\Rightarrow m=1\)(loại) hoặc \(m=\frac{1-3\sqrt{5}}{4}\)(loại) hoặc \(m=\frac{1+3\sqrt{5}}{4}\)(loại)
Vậy không giá trị nào của m thoả mãn đề bài.
1/ \(x^3-5x^2+5x+2+2mx-4m=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x-1\right)+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+2m-1\right)=0\)
Để pt có 3 nghiệm phân biệt thì \(x^2-3x+2m-1=0\) (1) có 2 nghiệm phân biệt khác 2
\(\Rightarrow\Delta=9-4\left(2m-1\right)=13-8m>0\Rightarrow m< \dfrac{13}{8};m\ne\dfrac{3}{2}\)
\(x_1^2+x^2_2+x^2_3=11\Leftrightarrow x_1^2+x_2^2=7\) với \(x_1;x_2\) là 2 nghiệm của (1)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\Leftrightarrow9-2\left(2m-1\right)=7\)
\(\Leftrightarrow2m-1=1\Rightarrow m=1\)
2/ Do gõ \(x_1;x_2\) lại thêm mũ rất mệt, nên ta đặt \(x_1=a;x_2=b\) gõ cho nhanh với \(\left\{{}\begin{matrix}a+b=x_1+x_2=2\\ab=x_1x_2=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=\left(a+b\right)^2-2ab=12\\a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=32\\a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=112\end{matrix}\right.\)
\(A=a^7+b^7=\left(a^6+b^6\right)\left(a+b\right)-ab\left(a^5+b^5\right)\)
\(\)\(=2\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)+4\left[\left(a^4+b^4\right)\left(a+b\right)-ab\left(a^3+b^3\right)\right]\)
\(=2.12\left(112-\left(-4\right)^2\right)+4\left[112.2-\left(-4\right).32\right]\)
\(=3712\)
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha