Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
<=> 9x2 - 18x + 9 + y2 - 6y + 9 + 2x2 + 4z + 2 = 0
<=> 9(x2 - 2x + 1) + (y - 3)2 + 2(z2 + 2z + 1) = 0
<=> 9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = 0
<=> \(\left\{\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\)
<=> \(\left\{\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
a) \(x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy : \(S=\left\{2;-3\right\}\)
a) PT <=> \(\left(x^2-2x\right)+\left(3x-6\right)=0\)
<=> \(x\left(x-2\right)+3\left(x-2\right)=0\)
<=> \(\left(x-2\right)\left(x+3\right)=0\)
<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
KL: ...
b) \(PT< =>\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\)
<=> \(\left(x+\frac{1}{2}\right)^2=\frac{-15}{4}\)
<=> x = \(\varnothing\)
c) PT <=> \(\left(t^2-6t\right)+\left(12t-72\right)=0\)
<=> \(t\left(t-6\right)+12\left(t-6\right)=0\)
<=> \(\left(t+12\right)\left(t-6\right)=0\)
<=> \(\left[{}\begin{matrix}t=-12\\t=6\end{matrix}\right.\)
d) PT <=> \(\left(x^2-x\right)-\left(8x-8\right)=0\)
<=> \(x\left(x-1\right)-8\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x-8\right)=0\)
<=> \(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
e) PT <=> \(\left(x^2-9x+\frac{81}{4}\right)+\frac{23}{4}\)
<=> \(\left(x-\frac{9}{2}\right)^2=\frac{-23}{4}\)
<=> x = \(\varnothing\)
\(b.6x^4+25x^3+12x^2-25x+6=0\\\Leftrightarrow 6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\\\Leftrightarrow 6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\\\Leftrightarrow \left(6x^3+13x^2-14x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^3+18x^2-5x^2-15x+x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)\right]\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-5x+1\right)\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-3x-2x+1\right)\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[3x\left(2x-1\right)-\left(2x-1\right)\right]\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(2x-1\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x-1=0\\x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=\frac{1}{2}\\x=-3\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{1}{3};\frac{1}{2};-3;-2\right\}\)
\(2x^4-9x^3+14x^2-9x+2=0\\\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\\\Leftrightarrow 2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\\\Leftrightarrow \left(2x^3-7x^2+7x-2\right)\left(x-1\right)=0\\\Leftrightarrow \left[2\left(x^3-1\right)-7x\left(x-1\right)\right]\left(x-1\right)=0\\\Leftrightarrow \left(x-1\right)^2\left[2\left(x^2+x+1\right)-7x\right]=0\\\Leftrightarrow \left(2x^2+2x+2-7x\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-5x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-x-4x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x-1\right)^2=0\\\Leftrightarrow \left(x-2\right)\left(2x-1\right)\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=1\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{2};1\right\}\)
\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)=112\)
\(\left(x^2+3x-4\right)\left(x^2+3x-10\right)=112\)
Đặt \(t=x^2+3x-4\)
\(t\left(t-6\right)=112\Rightarrow t^2-6t-112=0\Leftrightarrow\left(t+8\right)\left(t-14\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+3x-4=-8\\x^2+3x-4=14\end{cases}\Rightarrow\orbr{\begin{cases}\left(l\right)\\x=3,x=-6\end{cases}}}\)
\(x^3+9x=0\)
<=> \(x\left(x^2+9\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)
<=> \(x=0\)
\(9x^2-4-2\left(3x-2\right)^2=0\)
<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)
<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)
<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)
<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)
<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)
<=> \(3\left(3x-2\right)\left(2-x\right)=0\)
<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
\(\left(x^3-x^2\right)-4x+8x-4=0\)
<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)
<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x^2+4\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)
<=> \(x=1\)
\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)
<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)
<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)
<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)
<=> \(5x-2+3x-6=-4\)
<=> \(8x-8=-4\)
<=> \(8\left(x-1\right)=-4\)
<=> \(x-1=-\frac{1}{2}\)
<=> \(x=-\frac{3}{2}\)
\(4x+5=0\)
\(\Leftrightarrow4x=-5\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Vậy....
\(6x+7=0\)
\(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\frac{-7}{6}\)
Vậy....
x2-9x+20=0
<=>x2-4x-5x+20=0
<=>x.(x-4)-5.(x-4)=0
<=>(x-4)(x-5)=0
<=>x-4=0 hoặc x-5=0
<=>x=4 hoặc x=5