\(x^2-5x-3=0\)

ai trả lời nhanh giúp mình với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Ko làm đc bạn nhé :< Mik thử tất cả mọi cách về hằng đẳng thức r, ko giải đc

15 tháng 10 2017

\(\Leftrightarrow x^2-5x+\frac{25}{4}-9,25=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2-9,25=0\)

Vì \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\in R\)

Nên \(\left(x-\frac{5}{2}\right)^2-9,25\ge9,25\forall x\in R\)

Vậy không có giá trị nào của x.

24 tháng 5 2018

=> \(x^4+x^4-\left(x^5+x^2\right)-2x=1\)

=> \(x^5-x^5-x^2-2x=1\)

=> \(0-x.\left(x+2\right)=1\)

=> \(x.\left(x+2\right)=-1\)

Ta có bảng:

\(x\)\(1\)\(-1\)
\(x+2\)\(-1\)\(1\)

=>

\(x\)\(1\)\(-1\)
\(x\)\(-3\)\(-1\)

Vậy x = 1;-1;-3

24 tháng 5 2018

\(x^4+3x^3-x^2-x^3-3x^2+x-x^2-3x+1.\)

\(\left(x^4-x^3-x^2\right)+3\left(x^3-x^2-x\right)-\left(x^2-x-1\right)=0\)

\(x^2\left(x^2-x-1\right)+3x\left(x^2-x-1\right)-\left(x^2-x-1\right)=0\)

\(\left(x^2-x-1\right)\left(x^2+3x-1\right)=0\)

đến đây dùng denta

\(x^2-x-1=0\Leftrightarrow\Delta=b^2-4ac=1+4=5>0\)

vậy pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\)  " 1)

\(x_2=\frac{1-\sqrt{5}}{2}\)                  (2)

\(x^2+3x-1=0\)

áp dụng denta ta có \(\Delta=b^2-4ac=9+4=13>0\)

vậy pt có 2 nghiệm phân biệt

\(x_3=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-3+\sqrt{13}}{2}\)      (3)

\(x_4=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-3-\sqrt{13}}{2}\)       (4)

gom hết lại rồi kl nghiệm của pt là ....................

13 tháng 4 2017

toán lp 8 ah bạn

13 tháng 4 2017

đúng òi

9 tháng 12 2015

Kệ cái thằng ấy, nó có trả lời đc câu nào tử tế đâu. Câu **** ý mà, kệ nó đi

ĐK:\(x\ge1\)

Bình phương 2 vế ta được

\(2\left(x^2+2x+3\right)^2=25\left(x^3+3x^2+3x+2\right)\)

\(\Leftrightarrow2\left(x^4+4x^2+9+4x^3+12x+6x^2\right)=25\left(x^3+3x^2+3x+2\right)\)

\(\Leftrightarrow2x^4-17x^3-55x^2-51x-32=0\)

\(\Leftrightarrow x^2\left(2x^2-17x-55\right)-51x-32=0\)

\(\Delta=256x^2-2176x-4439\)

    \(=\left(16x-68\right)^2-9063\)

Để pt có nghiệm thì \(\Delta\)là số chính phương 

\(\Rightarrow\left(16x-68\right)^2-9063=k^2\left(k\in N\right)\)

\(\Leftrightarrow\left(16x-68-k\right)\left(16x-68+k\right)=9063=1007.9=1.9063\)

Mặt khác k,x \(\ge\)0 nên

\(16x-68-k< 16x-68+k\)

Từ đó có 2 TH

*\(\hept{\begin{cases}16x-68-k=1\\16x-68+k=9063\end{cases}\Leftrightarrow}x=\frac{575}{2}\left(tm\right)\)

*\(\hept{\begin{cases}16x-68-k=9\\16x-68+k=1007\end{cases}\Leftrightarrow}x=36\left(tm\right)\)

Vậy.........................

17 tháng 8 2019

ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ bài này hok phải phương trình nghiệm nguyên nên em nghĩ chắc gì \(\Delta=k^2?!?\) 

Em thì dạng này cứ liên hợp làm tới thôi:v   Nhưng ko chắc:v

Nhận xét x = -2 không phải là nghiệm, xét x khác -2

ĐK: \(x>-2\)

Bớt 10x + 20= 5(2x + 4) ở cả hai vế

PT \(\Leftrightarrow2x^2-6x-14=5\left(\sqrt{x^3+3x^2+3x+2}-\left(2x+4\right)\right)\)

\(\Leftrightarrow2\left(x^2-3x-7\right)=5.\frac{x^3-x^2-13x-14}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)

\(\Leftrightarrow2\left(x^2-3x-7\right)=\frac{5\left(x+2\right)\left(x^2-3x-7\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)

\(\Leftrightarrow\left(x^2-3x-7\right)\left(2-\frac{5\left(x+2\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\right)=0\)

*Giải cái ngoặc to \(\Leftrightarrow2\sqrt{x^3+3x^2+3x+2}-\left(x+2\right)=0\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x^2+x+1\right)}-\left(x+2\right)=0\)

\(\Leftrightarrow\sqrt{x+2}\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)

\(\Leftrightarrow\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)(vì x > -2 nên \(\sqrt{x+2}>0\))

Ta có: \(VT=2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-1\ge2\sqrt{\frac{3}{4}}-1>0\)

Do đó cái ngoặc to vô nghiệm.

Còn lại cái ngoặc nhỏ và bí:)

Chắc đúng rồi nhỉ:))

9 tháng 11 2016

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

9 tháng 11 2016

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

10 tháng 10 2016

a) \(x^2-2x-3=0\)

\(\Leftrightarrow x^2-2x+1-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

b) \(2x^2+5x-3=0\)

\(\Leftrightarrow2x^2-x+6x-3=0\)

\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)

25 tháng 7 2016

a/ \(x^3=5x-12\Leftrightarrow x^3-5x+12=0\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(4x+12\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+4\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+4\right)=0\)

*) x + 3 = 0 <=> x = -3

S = {-3}

b/ có ng giải

c/ \(\left(2x^2-5x+3\right)^2=\left(x^2+x-2\right)^2\Leftrightarrow\left(2x^2-5x+3\right)^2-\left(x^2+x-2\right)^2=0\)

\(\Leftrightarrow\left(2x^2-5x+3-x^2-x+2\right)\left(2x^2-5x+3+x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-6x+5\right)\left(3x^2-4x-1\right)=0\)

\(\Leftrightarrow\left[\left(x^2-x\right)-\left(5x+5\right)\right]\left(3x^2-4x+1\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-5\left(x-1\right)\right]\left(3x^2-4x+1\right)=0\Leftrightarrow\left(x-5\right)\left(x-1\right)\left(3x^2-4x+1\right)=0\)

*) x- 5 = 0  <=> x  = 5

*) x- 1 = 0  <=> x = 1

S={1;5}

d/ \(x^3-x^2=4\left(x-1\right)^2\Leftrightarrow x^3-x^2-4\left(x-1\right)^2=x^3-x^2-4x^2+8x-4=0\)

\(\Leftrightarrow x^3-5x^2+8x-4=\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2=0\)

*) x - 1 = 0  <=> x = -1

*) (x - 2)^2 = 0  <=> x = 2

S = {-1;2}

25 tháng 7 2016

b) \(x^{16}+x^8+1=0\)

\(x^8\left(x^8+1\right)+1=0\)

\(x^8\left(x^8+1\right)=-1\)

Ta có: x^8 >/  0 

x^8 + 1  >/  1

=> x^8(x^8 +1)   >/   0

Vậy x thuộc rỗng.

19 tháng 10 2019

a) \(\frac{x^2+5x}{5x^2+x^3}\)

\(=\frac{x\left(x+5\right)}{x^2\left(x+5\right)}=\frac{1}{x}\)

b) \(\frac{x^4+x^2+1}{x^3+1}\)

\(=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^2+x+1}{x+1}\)

19 tháng 10 2019

\(a)\frac{x^2+5x}{5x^2+x^3}=\frac{x\left(x+5\right)}{x^2\left(5+x\right)}=\frac{1}{x}\)