Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $x\geq 0$
Ta có: \(x^2-5x-2\sqrt{3x}+12=0\)
\(\Leftrightarrow (x^2-6x+9)+(x-2\sqrt{3x}+3)=0\)
\(\Leftrightarrow (x-3)^2+(\sqrt{x}-\sqrt{3})^2=0\)
\(\Leftrightarrow (\sqrt{x}-\sqrt{3})^2(\sqrt{x}+\sqrt{3})^2+(\sqrt{x}-\sqrt{3})^2=0\)
\(\Leftrightarrow (\sqrt{x}-\sqrt{3})^2[(\sqrt{x}+\sqrt{3})^2+1]=0\)
Vì \((\sqrt{x}+\sqrt{3})^2+1\neq 0\Rightarrow (\sqrt{x}-\sqrt{3})^2=0\Rightarrow x=3\) (thỏa mãn)
Vậy..........
ĐKXĐ \(x\ge0\)
\(x^2-5x-2\sqrt{3x}+12=0\)
\(\Rightarrow x^2-6x+9+x-2\sqrt{3x}+3=0\)
\(\Rightarrow\left(x-3\right)^2+\left(\sqrt{x}-\sqrt{3}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(\sqrt{x}-\sqrt{3}\right)^2=0\end{cases}}\Leftrightarrow x=3\)
Vậy...
\(\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+9\right)=0\) (dk:x>=0)
\(\left(x-3\right)^2+\left(\sqrt{x}-3\right)^2=0\)
=>\(\hept{\begin{cases}x-3=0\\\sqrt{x}-3=0\end{cases}}\)
=>x=3 tmdk
- Vũ Minh Tuấn29GP
- Băng Băng 2k624GP
- Phạm Lan Hương10GP
- Nguyễn Việt Lâm7GP
- No choice teen7GP
- tth6GP
- Nguyễn Thanh Hằng6GP
- Nguyễn Văn Đạt5GP
- Ho Nhat Minh4GP
- Nguyễn Thị Thùy Trâm4GP