Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
a) Ta có: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-2\right)-3\left(x-2\right)\right]\left[x\left(x-1\right)-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\)
Vậy: S={1;2;3;4}
b) Ta có: \(\left(2x+1\right)^2-2x-1=2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2x+1\right)-2=0\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)+\left(2x+1\right)-2=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1-2\right)+\left(2x+1-2\right)=0\)
\(\Leftrightarrow\left(2x+1+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{2}\right\}\)
c) Ta có: \(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)
\(\Leftrightarrow x\left(x^3-x^2+x-x^2+x-1\right)-6=0\)
\(\Leftrightarrow x\left(x^3-2x^2+2x-1\right)-6=0\)
\(\Leftrightarrow x^4-2x^3+2x^2-x-6=0\)
\(\Leftrightarrow x^4-2x^3+2x^2-4x+3x-6=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)+3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)+3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+3\right)=0\)
mà \(x^2-x+3>0\forall x\)
nên (x-2)(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy: S={2;-1}
d) Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1+2x\right)+x\left(x^2+1+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2+x+1\right)=0\)
mà \(x^2+x+1>0\forall x\)
nên x+1=0
hay x=-1
Vậy: S={-1}
a) \(\left(x^2+5x-6\right):\left(x-1\right)\)
\(=\left[x\left(x+6\right)-\left(x+6\right)\right]:\left(x-1\right)\)
\(=\left(x-1\right)\left(x+6\right):\left(x-1\right)\)
\(=x+6\)
b) \(\left(x^3-x^2-5x+21\right):\left(x^2-4x+7\right)\)
\(=\left(x+3\right)\left(x^2-4x+7\right):\left(x^2-4x+7\right)\)
\(=x+3\)
\(a,25x^2-1=15\)\(< =>x^2=\dfrac{16}{25}< =>x=\pm\dfrac{4}{5}\)
\(b,\left(x-4\right)^2-\left(5x+2\right)^2=0\)\(< =>\left(-4x-6\right)\left(6x-2\right)=0\)
\(< =>\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(c,\left(x-1\right)\left(x-9\right)=0< =>\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
a) Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)
\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b,\(< =>25x^2+10x+1-25x^2+9-30=0\)
\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)
c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)
\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)
\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)
\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)
a: Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
1: \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
2: \(x^2-y^2+x-y\)
\(=\left(x^2-y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
3: \(3x-3y+x^2-y^2\)
\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
4: \(5x-5y+x^2-y^2\)
\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(5+x+y\right)\)
5: \(x^2-5x-y^2-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
6: \(x^2-y^2+2x-2y\)
\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
7: \(x^2-4y^2+x+2y\)
\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+1\right)\)
8: \(x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
9: \(x^2-4y^2+2x+4y\)
\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
A = 5x(4 x 2 – 2x + 1) – 2x(10 x 2 – 5x – 2) – 9x + 1
ó A = 5x.4 x 2 – 5x.2x + 5x.1 – 2x.10 x 2 – 2x.(-5x) – 2x(-2) – 9x + 1
ó A = 20 x 3 – 10 x 2 + 5 x – 20 x 3 + 10 x 2 + 4x – 9x + 1
ó A = 9x – 9x + 1
ó A = 1
Vậy giá trị của biểu thức A không phụ thuộc vào biến x
Đáp án cần chọn là: D
\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)
\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)
\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a. x(2x2 – 3) – x2(5x + 1) + x2
= 2x3 – 3x – 5x3 – x2 + x2 = -3x – 3x3
b. 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
= 3x2 – 6x – 5x + 5x2 – 8x2 + 24
= - 11x + 24
c. 1/2 x2(6x – 3) – x( x2 + 1/2 (x + 4)
= 3x3 - 3/2 x2 – x3 - 1/2 x + 1/2 x + 2
= 2x3 - 3/2 x2 + 2
a, x(2x2-3)-x2(5x+1)x2
=2x3-3x-5x3- x2+x2=-3x-3x3
học tốt nhé!!
đề ?
x.x-5.x-1=x . ( x - 5 ) -1