Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-9x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy: x∈{4;5}
b) Ta có: \(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x=0
Vậy: x=0
c) Sửa đề: \(x^2-2x-15=0\)
Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: x∈{-3;5}
d) Ta có: \(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)
\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)
Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}
hướng dẫn cách làm-tự làm tiếp nha :)
a) đặt \(k=x^2-4x\), ta có:\(k^2-2k=15\)\(\Rightarrow k^2-2x+1=16\Rightarrow\left(k-1\right)^2=4^2=\left(-4\right)^2\)
b) đặt \(A=x^2-3x\), ta có: \(A^2-2A-8=0\Rightarrow A^2-2A+1=9\Rightarrow\left(A-1\right)^2=3^2=\left(-3\right)^2\)
c)theo đề \(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\x^2-8x+9=0\end{cases}}\)
\(x^2-4x+3=0\Leftrightarrow x^2-4x+4=1\Leftrightarrow\left(x-2\right)^2=1^2=\left(-1\right)^2\)
\(x^2-8x+9=0\Leftrightarrow x^2-8x+16=7\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{7}^2\)
vt ko chi tiết bn ib là đc rùi, sai tớ làm gì T.T
mà tớ làm mẫu 1 bài thui nha, bài còn lại có cách làm òi. bn tự dựa vô nha
\(\text{Đặt }k=x^2-4x,\text{ta có:}\)
\(\left(x^2-4x\right)^2-2.\left(x^2-4x\right)=15\)
\(\Leftrightarrow k^2-2k=0\)
\(\Leftrightarrow k^2-2k+1=16\)
\(\Leftrightarrow\left(k-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}k-1=4\\k-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}k=5\\k=-3\end{cases}}}\)
\(\text{Với }k=5,\text{Ta có: }x^2-4x=5\Rightarrow x^2-4x-5=0\Rightarrow x^2-5x+x-5=0\)
\(\Rightarrow x.\left(x-5\right)+\left(x-5\right)=0\Rightarrow\left(x+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
\(\text{Với }k=-3,\text{ta có: }x^2-4x=-3\Rightarrow x^2-4x+3=0\Rightarrow k^2-3x-x+3=0\)
\(\Rightarrow x.\left(x-3\right)-\left(x-3\right)=0\Rightarrow\left(x-1\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy...
a) \(x^2+4x+10\)
\(=x^2+4x+4+6\)
\(=\left(x+2\right)^2+6\)
Mà: \(\left(x+2\right)^2+6>0\forall x\)
\(\Rightarrow x^2+4x+10>0\forall x\)
b) \(x^2-6x+15\)
\(=x^2-6x+9+6\)
\(=\left(x-3\right)^2+6\)
Mà: \(\left(x-3\right)^2+6>0\forall x\)
\(\Rightarrow x^2-6x+16>0\forall x\)
c) \(-x^2+2x-5\)
\(=-\left(x^2-2x+5\right)\)
\(=-\left(x^2-2x+1+4\right)\)
\(=-\left(x-1\right)^2-4\)
Mà: \(-\left(x-1\right)^2-4< 0\forall x\)
\(\Rightarrow-x^2+2x-5< 0\forall x\)
kho..............wa...................troi................thi......................ret.....................ai..............tich...............ung.....................ho....................minh..................voi................ret............wa
a) \(4x^2-4x-15=0\)
<=> \(\left(2x-5\right)\left(2x+3\right)=0\)
<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
Vậy....
b) \(x^3-6x^2-x+30=0\)
<=> \(\left(x-5\right)\left(x-3\right)\left(x+2\right)=0\)
tự giải tiếp
a)8x2+30x+7=0
=>8x2+28x+2x+7=0
=>(8x2+2x)+(28x+7)=0
=>2x(4x+1)+7(4x+1)=0
=>(2x+7)(4x+1)=0
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
b)(x2-4x)2-8(x2-4x)+15=0
=>x4-8x3+8x2+32x+15=0
=>(x-5)(x+1)(x2-4x-3)=0
\(\Rightarrow\hept{\begin{cases}x=5\\x=-1\\x=2-\sqrt{7};x=\sqrt{7}+2\end{cases}}\)
\(4x^2+4x+15=\left(2x\right)^2+2.2x.1+1^2-1^2+15=\left(2x+1\right)^2+14>0\)với mọi x
Bài làm:
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\)
Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)
\(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)
\(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )
b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )
Ta có : \(x^2-4x+15=x^2-4x+4+11\)
\(=\left(x-2\right)^2+11\ge11>0\forall x\)
Vậy phương trình vô nghiệm
\(x^2-4x+15=0\)
\(\Leftrightarrow x^2-4x+4+11=0\)
\(\Leftrightarrow\left(x-2\right)^2=-11\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
Mà \(\left(x-2\right)^2=-11\) (vô lí)
Vậy \(S=\varnothing\)