Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = -1/2 vào pt trên ta đc
\(-\frac{1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)\)
\(=-\frac{\left(x-3\right)\left(x-1\right)}{2}+2x-2\)
a) Với m=\(\frac{-1}{2}\)ta có:
\(\frac{-1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)=0\)
<=> \(x^2-8x+7=0\)
Vì a+b+c=1+(-8)+7=0
Nên pt có nghiệm \(x_1=1;x_2=7\)
b) +) nếu m=0, pt có dạng 2(x-1)=0 <=> x=1
+) nếu m\(\ne\)0, pt có dạng mx2+2(1-2m)x+3m-2=0
\(\Delta'=\left(1-2m\right)^2-k\left(3m-2\right)=1-4m-3m^2+2m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
Vậy pt có nghiệm với mọi m
a)với m=1 ta có:
x2-(2*1+1)x+12+1-6=0
<=>x2-3x+2-6=0
<=>x2-3x-4=0
denta:(-3)2-(-4(1.4))=25
x1,2=\(\frac{3\pm\sqrt{25}}{2}\)=>x=-1 hoặc 4
Làm được câu đầu P/s mới lớp 8 thôi
Ta có: \(x^2-4x+m+1=0\)
\(\Rightarrow\Delta'=3-m\)
a) Khi m = 2
\(x^2-4x+3=0\)
\(\Rightarrow\Delta=3-2=1\)
\(\Rightarrow x_1=2+1=3\)
\(\Rightarrow x_2=2-1=1\) Sai bỏ qa nha :"))))
Các Admin ơi hiện nay có một bạn tên là Quản lý Online Math nhưng đây không phải là quản lí mà là Nam Cao Nguyễn bạn ấy thương xuyên bảo chúng mình đặt bảo mật rôi bây giờ cậu ấy lấy nick của Nguyễn Thị Hiện Nhân
Câu 1 x^2 - 8x +12 = 0 ( a = 1 ; b' = -4 ; c = 12 )
denta phẩy = b' bình - ac = (-4)^2 - 1*12 = 16 - 12 = 4 > 0
Do denta phẩy > 0 => pt có 2 ngiệm phân biệt
x một = -b' + căn denta phẩy tất cả trên a = 4 + căn 4 trên 1 = 6
x hai = -b' - căn denta phẩy tất cả trên a = 4 - căn 4 trên 1 = 2
KLuan
Câu 2
a) Với m = -1 => x^2 + 4x +3 = 0 ( a = 1 ; b= 4 ; c = 3)
Xét a - b + c = 1 - 4 + 3 = 0
=> x một = -1 ; x hai = -c trên a = -3 / 1 = -3
b) denta = b^2 - 4ac = -( m - 3 ) tất cả mũ hai - 4 * 1 * ( - 2m + 1 )
= m^2 + 2m + 5
= m^2 + 2m + 1/4 + 19/4 > hoặc = 19/4 >0
Vậy với mọi m thì pt có 2 nghiệm phân biệt
CHÚC BẠN HỌC GIỎI NHA !!!!!!!!!!!!!!
a) Thay \(m=3\)vào phương trình ta được phương trình mới là: \(x^2-6x+4=0\)
Ta có: \(\Delta=\left(-6\right)^2-4.1.4=36-16=20>0\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt :
\(x_1=\frac{-\left(-6\right)+\sqrt{20}}{2}=\frac{6+2\sqrt{5}}{2}=\frac{2\left(3+\sqrt{5}\right)}{2}=3+\sqrt{5}\)
\(x_2=\frac{-\left(-6\right)-\sqrt{20}}{2}=\frac{6-2\sqrt{5}}{2}=\frac{2\left(3-\sqrt{5}\right)}{2}=3-\sqrt{5}\)
Vậy với \(m=3\)thì phương trình có tập nghiệm là: \(S=\left\{3-\sqrt{5};3+\sqrt{5}\right\}\)
b) Để phương trình có 2 nghiệm thì \(\left(-2m\right)^2>4.1.4\)
\(\Leftrightarrow4m^2>16\)\(\Leftrightarrow m^2>4\)\(\Leftrightarrow\orbr{\begin{cases}m< -2\\m>2\end{cases}}\)
Vậy để phương trình có 2 nghiệm thì \(m< -2\)hoặc \(m>2\)