Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x² - 2 = 0
x² = 2
x = -√2 (loại) hoặc x = √2 (loại)
Vậy không tìm được x Q thỏa mãn đề bài
b) x² + 7/4 = 23/4
x² = 23/4 - 7/4
x² = 4
x = 2 (nhận) hoặc x = -2 (nhận)
Vậy x = -2; x = 2
c) (x - 1)² = 0
x - 1 = 0
x = 1 (nhận)
Vậy x = 1
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
Dễ
Thế
Mà
Cũnhoir
Dc
Ạ
Chịu
Chắc
Phải
Ngu
Lamqs
Mới
Hỏi
Câu
Này
Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)
\(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\)
\(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)
\(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\) (1)
Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\) (2)
Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)
\(=2.f\left(3\right)+f\left(1\right)\)
\(=6.f\left(1\right)+f\left(1\right)\)
\(=7.f\left(1\right)\)
Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\) (3)
Từ (1);(2);(3)
\(\implies\) \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
a: \(x^2=2\)
=>\(x^2=\left(\sqrt{2}\right)^2\)
=>\(x=\pm\sqrt{2}\)
b: \(x^2=9\)
=>\(x^2=3^2\)
=>\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(\left(x-\sqrt{2}\right)^2=2\)
=>\(\left[{}\begin{matrix}x-\sqrt{2}=\sqrt{2}\\x-\sqrt{2}=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=0\end{matrix}\right.\)
d: \(4x^2-1=0\)
=>\(4x^2=1\)
=>\(x^2=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-n-so-x1-x2-xn-moi-so-nhan-gia-tri-1-hoac-1chung-minh-rang-neu-x1x2-x2x3-xnx1-0-thi-n-chia-het-cho-4.3190495787733
Tham khảo :
Lời giải:
Vì x1,x2,...,xnx1,x2,...,xn nhận giá trị 11 hoặc −1−1 nên x1x2,x2x3,...,xnx1x1x2,x2x3,...,xnx1 nhận giá trị 11 hoặc −1−1
Để tổng x1x2+...+xnx1=0x1x2+...+xnx1=0 thì số số hạng nhận giá trị 11 bằng số số hạng nhận giá trị −1−1
Gọi số số hạng nhận giá trị 11 và số số hạng nhận giá trị −1−1 là kk
Tổng số số hạng: n=k+k=2kn=k+k=2k
Lại có:
(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1
⇒k⇒k chẵn
⇒n=2k⋮4
\(\left(x-3\right)\left(4-x\right)>0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\) (vô lí)
hoặc \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)
Vậy \(x=\Phi\)
a: \(=\dfrac{3x^4-12x^3+12x^3-48x^2+47x^2-168x+168x-672+673}{x-4}\)
\(=3x^3+12x^2+47x+168+\dfrac{673}{x-4}\)
b: \(=\dfrac{x^4-3x^3-7x^2+3x^3-9x^2-21x+15x^2-45x-105+53x+91}{x^2-3x-7}\)
\(=x^2+3x+15+\dfrac{53x+91}{x^2-3x-7}\)
c: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)
\(x^2=4\rightarrow x=\pm2\)
\(x^2=5\rightarrow x=\pm\sqrt{5}\)
\(x^2=0\rightarrow x=0\)
\(x^2=1\rightarrow x=\pm1\)
\(x^2-9=0\rightarrow x^2=9\rightarrow x=\pm3\)
\(x^2+1=0\rightarrow x^2=-1\rightarrow x\in\varnothing\)
\(x^2=2\rightarrow x=\pm\sqrt{2}\)
\(x^2-3=0\rightarrow x^2=3\rightarrow x=\pm\sqrt{3}\)
\(x^2+1=82\rightarrow x^2=81\rightarrow x=\pm9\)
\(7x^2=63\rightarrow x^2=9\rightarrow x=\pm3\)
\(x^2+\frac{7}{4}=\frac{23}{4}\rightarrow x^2=4\rightarrow x=\pm2\)
Chúc bạn hok tốt!!!