Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x-1=-17
<=>3x=-16
<=>x=-16/3
Vậy...
b) 40-(3x-8)=3(3-5x)
<=>40-3x+8=9-15x
<=>12x = -39
<=> x = -13/4
Vậy ...
c) x/2(x-2) + x/2x+2 = 2x/(x+1)(x-2)
<=> x/2(x-2) + x/2(x+1) = 2x/(x+1)(x-2)
<=> x(x+1)/2(x-2)(x+1) + x(x-2)/2(x+1)(x-2) = 4x/2(x+1)(x-2)
=>x(x+1) + x(x-2) = 4x
<=> x2 + x + x2 -2x = 4x
<=> 2x^2 -5x = 0
<=> x(2x-5) = 0
<=>x=0 hoặc 2x-5=0
<=>x=0 <=>x=5/2
Vậy...
(Nhớ tick mik nha)
a: =>3x=-16
=>x=-16/3
b: =>40-3x+8=9-15x
=>-3x+48=9-15x
=>12x=-39
=>x=-13/4
c: =>x(x+1)+x(x-2)=4x
=>x^2+x+x^2-2x-4x=0
=>2x^2-5x=0
=>x=0 hoặc x=5/2
pt <=> \(x^3+9.x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3-4x^2+2x+4x^2\) -2x+1 -3x^2 =54
<=> \(x^3+9.x^2+27x+27-9x^3-6x^2-x+8x^3-4x^2+2x+4x^2\) -2x+1 -3x^2 =54
<=> 26x -26=0 <=> x=1
hãy like đi :v
a: Để A là số nguyên thì \(x-3\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{4;2;5;1\right\}\)
b: Để B là số nguyên thì \(x+2-5⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-1;-3;3;-7\right\}\)
d: Để D là số nguyên thì \(3x^2+2x-3x-2+3⋮3x+2\)
\(\Leftrightarrow3x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-\dfrac{1}{3};-1;\dfrac{1}{3};-\dfrac{5}{3}\right\}\)
b, \(2x\left(x-2\right)-\left(2-x\right)^2=2x\left(x-2\right)+\left(x-2\right)^2=\left(x-2\right)\left(2x+x-2\right)=\left(x-2\right)\left(3x-2\right)\)
>> T sẽ ko lm hết đâu :v <<
a) \(4x^3-14x^2\)
\(2x^2.\left(2x-7\right)\)
b) \(2x\left(x-2\right)-\left(2-x\right)^2\)
\(2x\left(x-2\right)-\left(-x\left(x-2\right)\right)^2\)
\(2x\left(x-2\right)-\left(x-2\right)^2\)
\(\left(x-2\right)\left(2x-\left(x-2\right)\right)\)
\(\left(x-2\right)\left(2x-x+2\right)\)
\(\left(x-2\right)\left(x+2\right)\)
c) \(\left(x-3\right)^3+3x\)
\(x^3-9x^2+27x-27+3x\)
\(x^3-9x^2+30x-27\)
Mk chỉ làm về dạng bình phương cộng( trừ ) một số thôi ,bn lại tự đánh giá nhé !
\(C=x^2-x+1\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(E=x^2+3x+3\)
\(=x^2+3x+\dfrac{9}{4}+\dfrac{3}{4}\)
\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{3}{4}\)
\(=\left[x^2+3.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{3}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)
\(G=3x^2-5x+3\)
\(=x^2+x^2+x^2-2x-2x-x+1+1+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-1\right)^2+\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(K=4x^2+3x+2\)
\(=4x^2+3x+\dfrac{9}{16}+\dfrac{23}{16}\)
\(=\left(4x^2+3x+\dfrac{9}{16}\right)+\dfrac{23}{16}\)
\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}\)
\(\frac{x^2+3x}{x+3}=40\)
\(\Rightarrow x^2+3x=40\left(x+3\right)\)
\(\Rightarrow x\left(x+3\right)=40\left(x+3\right)\)
\(\Rightarrow x=40\)
\(\frac{x^2+3x}{x+3}=40\)
\(=>x^2+3x=40.\left(x+3\right)\)
\(=>x.\left(x+3\right)=40.\left(x+3\right)\)
\(=>x=40\)