Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
=> pt vô no
2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)
\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)
\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)
\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)
Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm
Câu 2:
ĐKXĐ: \(x\le3\)
\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))
\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)
\(\Leftrightarrow36x=-36\Rightarrow x=-1\)
Câu 3:
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)
\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)
Phương trình vô nghiệm
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
ĐK: \(\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\)( do VT<0)
\(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
\(\Leftrightarrow x^2-2x+1=x-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
\(\Leftrightarrow\left(x-1\right)^2=\frac{x^2-\frac{1}{3}\left(x^4+x^2+1\right)}{x+\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}}\)
\(\Leftrightarrow\left(x-1\right)^2=\frac{3x^2-x^4-x^2-1}{3x+\sqrt{3}.\sqrt{x^4+x^2+1}}\)
\(\Leftrightarrow\left(x-1\right)^2=\frac{-\left(x^2-1\right)^2}{3x+\sqrt{3}.\sqrt{x^4+x^2+1}}\)
\(\Leftrightarrow\left(x-1\right)^2\left[1+\frac{1}{3x+\sqrt{3.\left(x^4+x^2+1\right)}}\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\) ( \(1+\frac{1}{3x+\sqrt{3.\left(x^4+x^2+1\right)}}>0\left(ĐK\right)\)
\(\Leftrightarrow x=1\)
Kết Luận:...