Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-11x+30=0\\ \Leftrightarrow x^2-5x-6x+30=0\\ \Leftrightarrow x\left(x-5\right)-6\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
\(b,\Delta=\left(-8\right)^2-4.3\left(-5\right)=64+60=124\)
\(x_1=\dfrac{8+\sqrt{124}}{2.3}=\dfrac{8+2\sqrt{31}}{6}=\dfrac{4+\sqrt{31}}{3}\)
\(x_1=\dfrac{8-\sqrt{124}}{2.3}=\dfrac{8-2\sqrt{31}}{6}=\dfrac{4-\sqrt{31}}{3}\)
Lời giải:
a. $15-(-2x)=22+3x$
$15+2x=22+3x$
$15-22=3x-2x$
$-7=x$
b.
$5(17-3x)+24=4$
$5(17-3x)=4-24=-20$
$17-3x=-20:5=-4$
$3x=17-(-4)=21$
$x=21:3=7$
c.
$42:(x^2+5)=3$
$x^2+5=42:3=14$
$x^2=14-5=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $x=-3$
d.
$73-3x^2=5^6:(-5)^4=(-5)^6:(-5)^4=(-5)^2=25$
$3x^2=73-25=48$
$x^2=48:3=16=4^2=(-4)^2$
$\Rightarrow x=4$ hoặc $x=-4$
\(\Leftrightarrow\left(-2x^2-3\right)\left(-9x^2-10\right)< 0\Leftrightarrow\left(2x^2+3\right)\left(9x^2+10\right)< 0\)
Mặt khác: \(\hept{\begin{cases}2x^2+3>0+3=3\\9x^2+10>0+10\end{cases}}\)nên \(\left(2x^2+3\right)\left(9x^2+10\right)>0\)
Vậy không tồn tại số x thỏa mãn
a: (x^2+9)(9x^2-1)=0
=>9x^2-1=0
=>x^2=1/9
=>x=1/3 hoặc x=-1/3
b: (4x^2-9)(2^(x-1)-1)=0
=>4x^2-9=0 hoặc 2^(x-1)-1=0
=>x^2=9/4 hoặc x-1=0
=>x=1;x=3/2;x=-3/2
c: (3x+2)(9-x^2)=0
=>(3x+2)(3-x)(3+x)=0
=>\(\left[{}\begin{matrix}3x+2=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};3;-3\right\}\)
d: (3x+3)^2(4x-4^2)=0
=>3x+3=0 hoặc 4x-16=0
=>x=4 hoặc x=-1
e: \(2^{\left(x-5\right)\left(x+2\right)}=1\)
=>(x-5)(x+2)=0
=>x-5=0 hoặc x+2=0
=>x=5 hoặc x=-2
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
\(\Leftrightarrow\left(3-x\right)\left(3+x\right)2\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=2\end{matrix}\right.\)
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
\(\Leftrightarrow\left(x-3\right)\left(11-x\right)\left(11+x\right)=0\)
hay \(x\in\left\{3;11;-11\right\}\)
\(x.\left(x+3\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy ...
\(x^2.\left(x+3\right)=0\)
\(=>\orbr{\begin{cases}x^2=0\\x+3=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy...