Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(x^2+z^2-2xz\right)+\left(x^2+y^2-2xy+2x-2y+1\right)+3\)
\(D=\left(x-z\right)^2+\left(x-y+1\right)^2+3\ge3\)
\(D_{min}=3\) khi \(\left\{{}\begin{matrix}x=z\\x=y-1\end{matrix}\right.\)
\(A=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)-3\)
\(=\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2-3\ge-3;vì:\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0;\left(z+1\right)^2\ge0\)
A min = -3 khi x=y=z = -1
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
Ta có :\(B=x^2+2xy+y^2+2x+2y+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+10\)
\(=\left(x+y+1\right)^2+9\ge9\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x+y+1=0\)
\(\Leftrightarrow x+y=-1\)
Vậy \(MinB=9\Leftrightarrow x+y=-1\)
=x^2+4x+4+y^2+2y+1+z^2-5
=(X+2)^2+(Y+1)^2+z^2-5
Ta Có: (x+2)^2_>0 với mọi x dấu = xay ra khi x+2=0=> x=-2
(ý+1)^2_>0 Với mọi y dấu bằng xảy ra khi y+1=0=>y=-1
Z^2 _> 0 với mọi z dau = xay ra khi z=0
=>(x+2)^2+(y+1)^2+z^2-5>_-5
Vậy biểu thức trên đạt min là -5 khi X=-2; y=-1;z=0