K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)\(\Rightarrow a=x^2-4x+4\)Như vậy , vs mỗi...
Đọc tiếp

@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)

\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)

\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)

Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)

\(\Rightarrow a=x^2-4x+4\)

Như vậy , vs mỗi giá trị của a , ta tìm được nhiều nhất 2 giá trị của x

\(Pt\left(1\right)\Leftrightarrow\left(a-26\right)\left(a-16\right)=m\)

              \(\Leftrightarrow a^2-42a+416=m\)

              \(\Leftrightarrow a^2-42a+416-m=0\)(2)

Để pt ban đầu có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}441-416+m>0\\42>0\left(Luonđung\right)\\416-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-25\\m< 416\end{cases}}\Leftrightarrow-25< m< 416\)

Khi đó theo hệ thức Vi-ét \(\hept{\begin{cases}a_1+a_2=42\\a_1a_2=416-m\end{cases}}\)

Với giá trị của m vừa tìm đc ở trên thì mỗi giá trị a1 và a2 sẽ nhận 2 giá trị của x 

Giả sử a1 nhận 2 nghiệm x1 và xcòn a2 nhận 2 nghiệm x3 và x4 (đoạn này ko hiểu ib nhá)

*Xét a1 nhận x1 và x2 

Khi đó phương trình \(a_1=x^2-4x+4\) sẽ nhận 2 nghiệm x1 và x2

 \(pt\Leftrightarrow x^2-4x+4-a_1=0\)(Đoạn này ko cần Delta nữa vì mình đã giả sử có nghiệm rồi)

Theo hệ thức Vi-ét \(\)\(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=4-a_1\end{cases}}\)

*Xét a2 nhận x3 và x4

Tương tự trường hợp trên ta cũng đc \(\hept{\begin{cases}x_3+x_4=4\\x_3x_4=4-a_2\end{cases}}\)

Ta có \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

\(\Leftrightarrow\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)

 \(\Leftrightarrow\frac{4}{4-a_1}+\frac{4}{4-a_2}=4\)

\(\Leftrightarrow\frac{1}{4-a_1}+\frac{1}{4-a_2}=1\)

\(\Leftrightarrow\frac{4-a_2+4-a_1}{\left(4-a_1\right)\left(4-a_2\right)}=1\)

\(\Leftrightarrow\frac{8-\left(a_1+a_2\right)}{16-4\left(a_1+a_2\right)+a_1a_2}=1\)

\(\Leftrightarrow\frac{8-42}{16-4.42+416-m}=1\)

\(\Leftrightarrow\frac{-34}{264-m}=1\)

\(\Leftrightarrow-34=264-m\)

\(\Leftrightarrow m=298\)(Thỏa mãn)

Tính toán có sai sót gì thì tự fix nhá :V

 

1
15 tháng 12 2021

không phải toán lớp một nha bạn 

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất

Chuyên mục học giỏi mỗi ngày Phần 2  : cách giải pt bậc 2 tốc độ thần thánh định lí của chúa  : biết thức dentacác ngươi ko cần biết denta là gì , hay tại sao lại gọi nó là denta ... bala balacác ngươi chỉ cần hiều là  : denta là cách làm tắt ko bị trừ điểm okaychú ý : denta chỉ áp dụng cho pt bậc 2 ,  nếu là pt bậc 4 thì ta sẽ đứa nó về dạng A^2=B^2  = cách tính denta + thêm tham số...
Đọc tiếp

Chuyên mục học giỏi mỗi ngày 

Phần 2  : cách giải pt bậc 2 tốc độ thần thánh 

định lí của chúa  : biết thức denta

các ngươi ko cần biết denta là gì , hay tại sao lại gọi nó là denta ... bala bala

các ngươi chỉ cần hiều là  : denta là cách làm tắt ko bị trừ điểm okay

chú ý : denta chỉ áp dụng cho pt bậc 2 ,  nếu là pt bậc 4 thì ta sẽ đứa nó về dạng A^2=B^2  = cách tính denta + thêm tham số . bala bla

còn gặp pt bậc 3 thì nó rất là khó đối với mấy bạn học kém , nên mình sẽ chỉ dạy giải pt bậc 2 cả 4 

ta có \(\Delta=B^2-4AC\)

vd 1  denta <0   \(16x^2+20x+30=0\)  " A là 16  . B là 20 , C là 30 "

nhớ ko dc lấy ẩn x ok , nếu trường hợp có tham số ví dụ  M chẳng hạn thì ta lấy cả M nhưng ko dc lấy ẩn x okay 

\(\Delta=B^2-4ac=20^2-4.16.30=400-1920< 0\)  , denta nhỏ hơn 0 pt vô nghiệm "

VD 2  denta >0 

\(x^2-x-1=0\)

\(\hept{\begin{cases}a=1\\b=-1\\c=-1\end{cases}\Leftrightarrow\Delta=b^2-4ac=1^2-\left(4.-1\right)=5>0}\)

khi denta lớn hơn 0 pt có 2 nghiêm phân biệt

\(\orbr{\begin{cases}x,1=\frac{-b+\sqrt{5}}{2a}=\frac{-1+5}{2}\\x,2=\frac{1-5}{2}\end{cases}}\)

 

, denta = 0 , pt có 2 nghiêm phân biệt , trường hợp này rất ít xảy ra  nên mình ko nói 

  các ngươi có thể hiểu rõ hơn = cách lên ytb ghi  denta và ứng dụng

2
5 tháng 7 2018

hay v: ))

5 tháng 7 2018

denta= 0 pt có nghiệm kép nha . chúa gõ nhầm :v

29 tháng 12 2017

ta có hệ pt 

<=>\(\hept{\begin{cases}x^3-3x-2=y-2\\y^3-3y-2=z-2\\z^3-3z-2=2-x\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)^2=y-2\\\left(y-2\right)\left(y+1\right)^2=z-2\\\left(z-2\right)\left(z+1\right)^2=2-x\end{cases}}}\)

nhân từng vế của 3 pt, ta có 

\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-\left(x-2\right)\left(y-2\right)\left(z-2\right)\)

<=>\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+1\right]=0\)

<=> x=2 hoặc y=2 hoặc z=2

đến đây bạn tự thay vào và giai tiếp nhé

30 tháng 12 2017

bạn làm cho ai vậy

17 tháng 8 2018

vãi cả lớp 1

17 tháng 8 2018

1) a) Phương trình có x1 và x2 trái dấu

\(\Leftrightarrow2m-4< 0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)

b) Phương trình có x1 và x2 cùng dương

\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4=0\\2m>0\\2m-4>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\left(BĐTđúng\right)\\m>0\\m>2\end{cases}\Leftrightarrow}m>2}\)

c) Phương trình có x1 và x2 cùng âm

\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4>0\\2m< 0\\2m-4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\\m< 0\\m>2\end{cases}\Leftrightarrow0>m>2}\)

P/s: không chắc -.-

29 tháng 6 2016

đây không phải toán lớp 1 nha bạn

8 tháng 11 2021

bạn đã chọn gửi toán lớp 1 thì bạn không được hỏi những câu hỏi ko phải toán lớp 1 nhé

26 tháng 11 2021

toán lớp 1 đây á

26 tháng 11 2021

lop1 :))))))))

bi

8 tháng 1 2019

a,\(A=x^2-2x+\frac{1}{x-1}\)

\(A=x^2-2x+1-\frac{x-2}{x-1}\)

\(A=\left(x-1\right)^2+\frac{-\left(x-2\right)}{x-1}\ge\frac{-\left(x-2\right)}{x-1}\)

Do \(x-2>x-1\Rightarrow-\left(x-2\right)< x-1\)

Mà \(\frac{-\left(x-2\right)}{x-1}\ge-1\)

Vậy Min A = -1 <=> x = 1