K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : x2 - 2x - 3m2 = 0 

Tại m = 1 thì pt trở thành : 

x2 - 2x - 3.1= 0 

<=> x2 - 2x - 3 = 0 

<=> x2 - 3x + x - 3= 0 

<=> x(x - 3) + (x - 3) = 0 

<=> (x - 3)(x + 1) = 0 

<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

22 tháng 1 2017

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)

\(\Leftrightarrow m^2-2m+1>0\)

\(\Leftrightarrow m\ne1\)

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)

Ta có: \(\left|x_1-x_2\right|-2=0\)

\(\Leftrightarrow\left|x_1-x_2\right|=2\)

\(\Leftrightarrow x^2_1-2x_1x_2+x^2_2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)

 \(\Leftrightarrow m^2-2m-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\) 

22 tháng 1 2017

Bài này không dùng vi_et đúng là dài thật: (hiểu "Tam giác" rồi chính thức gia nhập giải lớp 9 không giao luu nữa")

1 tháng 6 2016
  • Phương trình: \(x^2-5x+3m+1=0.\)ở dạng tổng quát \(ax^2+bx+c=0\)có hệ số \(a=1;b=-5;c=3m+1\)
  • \(x_1;x_2\)là nghiệm của phương trình thì: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=5\left(a\right)\\x_1\cdot x_2=\frac{c}{a}=3m+1\left(b\right)\end{cases}}\)
  • \(\left|x_1^2-x_2^2\right|=_{ }\left|\left(x_1-x_2\right)\cdot\left(x_1+x_2\right)\right|=5\cdot\left|x_1-x_2\right|=15\Rightarrow\left|x_1-x_2\right|=3\)
  • Nếu \(x_1-x_2=3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=4;x_2=1\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Nếu \(x_1-x_2=-3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=1;x_2=4\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Vậy, với m=1 thì PT trên có 2 nghiệm phân biệt thỏa mãn điều kiện đề bài.
 
AH
Akai Haruma
Giáo viên
6 tháng 4 2018

Lời giải:

a) Ta có:

\(x^2-2(m-1)x+2m-3=0\)

\(\Leftrightarrow (x^2-1)-2(m-1)x+2(m-1)=0\)

\(\Leftrightarrow (x-1)(x+1)-2(m-1)(x-1)=0\)

\(\Leftrightarrow (x-1)[x+1-2(m-1)]=0\)

\(\Leftrightarrow (x-1)(x-2m+3)=0\)

Do đó pt có nghiệm \(x=1\)

b) Nghiệm còn lại của PT là: \(x=2m-3\)

Như vậy : \(x_1-x_2=1\Leftrightarrow \left[\begin{matrix} 1-(2m-3)=1\\ (2m-3)-1=1\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} m=\frac{3}{2}\\ m=\frac{5}{2}\end{matrix}\right.\)

18 tháng 2 2023

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>[-(m+1)^2]-6m+4 >= 0`

                      `<=>m^2+2m+1-6m+4 >= 0`

                      `<=>m^2-4m+5 >= 0<=>(m-2)^2+1 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=6m-4):}`

Có:`(2m-2)x_1+x_2 ^2-4x_2=4`

`<=>(x_1+x_2-4)x_1+x_2 ^2-4x_2=4`

`<=>x_1 ^2+x_1 x_2 -4x_1+x_2 ^2-4x_2=4`

`<=>(x_1+x_2)^2-x_1x_2-4(x_1+x_2)=4`

`<=>(2m+2)^2-(6m-4)-4(2m+2)=4`

`<=>4m^2+8m+4-6m+4-8m-8=4`

`<=>4m^2-6m-4=0`

`<=>(2m-3/2)^2-25/4=0`

`<=>|2m-3/2|=5/2`

`<=>[(m=2),(m=-1/2):}`