Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT (1) <=> x = 3y + 3. Thay x = 3y + 3 vào PT (2) ta có: \(\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-9=0\Leftrightarrow10y^2+10y-6=0\Leftrightarrow y=\frac{-5+\sqrt{85}}{10}\)hoặc \(y=\frac{-5-\sqrt{85}}{10}\)
- Nếu \(y=\frac{-5+\sqrt{85}}{10}\) \(\Rightarrow x=3y+3=\frac{15+3\sqrt{85}}{10}\)
- Nếu \(y=\frac{-5-\sqrt{85}}{10}\Rightarrow x=3y+3=\frac{15-3\sqrt{85}}{10}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
\(x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)^2+1\ge1>0\)
=> pt vô nghiệm
cmtt với \(y^2+2y+2=0\)
=> pt vô ghiệm
Bài này đề bài là gì hả cậu ?