Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(x^2_2=2mx_2-m^2+m-1\)
nên ta có \(2m\left(x_1+x_2\right)-m^2+m-1=10m-1\)
theo vi-et ta có :\(x_1+x_2=2m\Rightarrow3m^2-9m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=3\end{cases}}\)
thay nguowijc lại thấy m=3 thỏa mãn đề bài
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8\)
\(=\left(2m-4\right)^2+8>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có: 2(m-1)=6
=>m-1=3
=>m=4
a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình
hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)
Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1
b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)
\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)
Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)
\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)
Vậy với \(m=0\)thỏa mãn yêu cầu bài toán
a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1
\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)
Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)
b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)
Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)
Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)
a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)
\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)
b) A=\(x^4-13x^2+36\) không làm được nữa.....
Áp dụng định lí Viét ta có:
x1+x2 = 2m (1)
x1.x2 =m+2 (2)
X1 =2 nên ta áp dụng vào pt (1)
2+x2 =2m
Tương đương x2 = 2m-2 (*)
Áp dụng (*) vào pt (2) ta có:
2. (2m-2)= m+2
Tương đương 4m-4=m+2
Tương đương 3m= 6
Tương đương m=2
Xong nhé b :)